


# HYDAC INTERNATIONAL Innovative Solutions



Accumulators Bladder, Piston, Diaphragm



# HYDAC About HYDAC

HYDAC stands for worldwide presence and accessibility to the customer. HYDAC has over 1000 distributors worldwide and more than 40 wholly owned branches. HYDAC accumulators – a name synonymous with advanced technology, design, manufacturing and application engineering for more than 40 years, is considered a leader throughout the hydraulic industry, worldwide.



#### **HYDAC Products**



HYDAC is the only worldwide manufacturer producing all types of hydraulic accumulators – bladder, piston, and diaphragm accumulators and hydraulic dampeners. Not only does HYDAC supply the most comprehensive hydraulic accumulator range, but also the best technical solution to every application. HYDAC accumulators are supplied with pressure vessel certifications to the laws governingthe appropriate country of installation.



### **HYDAC Quality**



HYDAC stands for quality and customer service. HYDAC achieves the highest quality accumulators and related parts through continuous research and development in our laboratories for testing of physical, chemical, and mechanical properties. To ensure that HYDAC accumulators and related products are as innovative as possible with optimum performance and safety, a Finite Element Analysis is implemented during the Computer Aided Design process.



### **HYDAC Customer Service**



Our internal staff and worldwide distribution network take care of the important matter of customer service. HYDAC values high standards, professional ethics, and mutual respect in all transactions with customers, vendors, and employees. We invest in our relationships by providing expertise, quality, dependability, and accessibility to foster growth and a sense of partnership. Our customer service representatives are committed to serving the customers' needs.



#### **Energy and Environmental Technology**

HYDAC accumulators have played a key role in providing innovative solutions resulting in lowering operational costs and increasing hydraulic system performance in hydroelectric, wind, and waste power plants. HYDAC has vast expertise in applying accumulator technology within the power generation industry.



#### Offshore Shipbuilding and Marine Technology

Maritime technology places special demands on material functionality and reliability. HYDAC accumulators meet these demands due to our high quality and test standards. HYDAC accumulators have been applied under the toughest conditions from drilling rigs to deep sea applications.



#### **Mobile Market**

The aim of our engineers has always been to reduce volume and weight, resulting in increased product performance. HYDAC provides compact high performance accumulators for the Mobile Market, HYDAC accumulators can be found on all types of construction, forestry, and agricultural equipment.



#### **Industrial Engineering**

Since we began, HYDAC has been involved in many industrial applications. Our knowledge and expertise of many industries provides a comprehensive range of versatile hydraulic accumulators. HYDAC offers many solutions for machine tools, plastic injection molding machines, test equipment, presses, and metal forming machines. Other industrial applications include: steel and heavy industry, power transmission, and paper mills.



#### **Process Technology**

Worldwide HYDAC accumulators can be found in paper mills, steel mills and manufacturing plants, foundries, power plants, and in the chemical, petrochemical and plastics industries. For more than 40 years HYDAC has been supplying accumulators to companies who require the most advanced process technology.

# Table of Contents HYDAC

# Introduction



| General Intro | 0 | dι | С | ti | ic | r | ì |  |  |  |  |  |  |  |  |  |  | 1 |
|---------------|---|----|---|----|----|---|---|--|--|--|--|--|--|--|--|--|--|---|
| Certification |   |    |   |    |    |   |   |  |  |  |  |  |  |  |  |  |  | 2 |
| Overview      |   |    |   |    |    |   |   |  |  |  |  |  |  |  |  |  |  | 3 |

# Safety Equipment



| Safety Equipment Overview    | . 5     |
|------------------------------|---------|
| Protection on the Fluid Side | . 5     |
| Protection on the Gas Side   | <br>. 6 |
|                              |         |

### Bladder Accumulators



| SB Series   |
|-------------|
| Model Code  |
| Dimensions9 |
|             |

# **Diaphragm Accumulators**



| SBO Series   |
|--------------|
| Model Code   |
| Dimensions13 |
|              |

### Piston Accumulators



| SK 350/600 Series | <br> |  |  |  |  |  |  |  |  | <br>15 |
|-------------------|------|--|--|--|--|--|--|--|--|--------|
| Model Code        | <br> |  |  |  |  |  |  |  |  | <br>17 |
| Dimensions        | <br> |  |  |  |  |  |  |  |  | <br>19 |
| SK 280 Series     | <br> |  |  |  |  |  |  |  |  | <br>21 |
| Model Code        | <br> |  |  |  |  |  |  |  |  | <br>21 |
| Dimensions        | <br> |  |  |  |  |  |  |  |  | <br>22 |
|                   |      |  |  |  |  |  |  |  |  |        |
|                   |      |  |  |  |  |  |  |  |  |        |

# Nitrogen Bottles



| SN Series   |  |  |  |  |  |  |  |  |  |  |  |  | . : | 23 |   |
|-------------|--|--|--|--|--|--|--|--|--|--|--|--|-----|----|---|
| Model Code  |  |  |  |  |  |  |  |  |  |  |  |  | . : | 23 | , |
| Dimensions. |  |  |  |  |  |  |  |  |  |  |  |  | . : | 24 |   |
|             |  |  |  |  |  |  |  |  |  |  |  |  |     |    |   |

# **Pulsation Dampeners**



# **Accessories**



|   | Thermal Fuse Caps           | 30 |
|---|-----------------------------|----|
|   | SAF Series                  |    |
|   | Safety & Shut-off Blocks    | 31 |
|   | FPK & FPS Series            |    |
|   | Charging & Gauging Units    | 37 |
| ۱ | Charging & Gauging Adapters | 39 |
| , | Permanent Gauging Block     | 41 |
|   | Mounting Components         | 43 |
|   |                             |    |

# Oil, Gas & Marine Products



| SB Series                  |    |
|----------------------------|----|
| Bladder Accumulators       | 48 |
| FPO Series                 |    |
| Charging and Gauging Units | 51 |
|                            |    |

# **Application Examples**



| Pulsation Dampening5                | 2 |
|-------------------------------------|---|
| Spring Element5                     | 2 |
| Emergency Brakes 5                  | 2 |
| Emergency Operation of a Cylinder 5 | 3 |
| Energy Storage5                     |   |
| Leakage Oil Compensation 5          | 3 |
|                                     |   |

# Sizing Accumulators



| Accumulators                         |
|--------------------------------------|
| Pulsation Dampeners &                |
| Suction Flow Stabilizers56           |
| Bladder, Diaphragm, & Piston Form 57 |
| Shock Applications Form58            |
| Pulsation Dampening Form 59          |
|                                      |

# Seal Kits & Spare Parts



| Dai e i ai ts            |    |
|--------------------------|----|
| Bladder Accumulators     | 60 |
| Competitive Crossover    | 62 |
| Bladder Accumulators     | 62 |
| Piston Accumulators      | 63 |
| Safety & Shut-off Blocks |    |
| Charging & Gauging Units | 65 |
|                          |    |

# Maintenance — Service & Parts



| SB 330/600 Bladder Accumulators | . 66 |
|---------------------------------|------|
| SK 210/350 Piston Accumulators  | . 74 |

Subject to Modifications

# **HYDAC** Introduction

**HYDAC** has been a name synonymous with advanced technology, design, manufacturing and application engineering for more than 40 years. HYDAC is the only manufacturer of all three types of accumulators – Bladder, Piston, & Diaphragm.

#### **Functions**

As an essential element in modern hydraulics, accumulators perform many useful functions, such as:

- · reducing pump capacity and electrical energy
- · providing auxiliary hydraulic power in case of an emergency
- · limiting pressure fluctuations during temperature changes
- in a closed hydraulic loop
- · compensating for leakage
- minimizing pump pulsations
- · absorbing shocks

#### **Benefits**

- increasing system performance and efficiency
- lowering operating and maintenance costs
- providing fail-safe conditions
- avoiding pump, pipe and system failures to achieve longer life expectancy

# **Types**

HYDAC offers all types of accumulators:

- bladder accumulators
- · diaphragm accumulators
- piston accumulators
- dampeners

#### Accessories

- All accessories needed for proper installation and maintenance of accumulators are available, including:
- · safety and shut off blocks
- · mounting components
- · accumulator sets
- · charging and gauging units

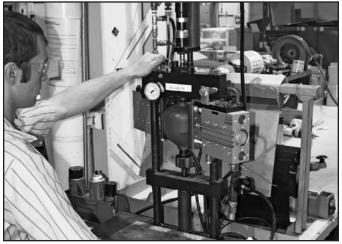
# Development and Engineering

Based on research and development in our laboratories for testing of physical, chemical and mechanical properties, HYDAC achieves the highest quality of accumulators and related parts.

Finite Element Analysis is implemented in the Computer Aided Design package supporting development and engineering to optimize the performance and safety of the components.

Application assistance is available utilizing HYDAC computer software to simulate your system and optimize the sizing for energy savings, shock absorption or pulsation dampening.

### Manufacturing and Assembly


Manufacturing and assembly at HYDAC are subject to strict quality control. HYDAC utilizes state-of-the-art manufacturing and quality assurance techniques.



CAD and Finite Element Analysis (FEA)



Electron-beam welding of diaphragm accumulators



Precharging of a Diaphragm Accumulator

# Certification HYDAC



Bladder Accumulator Assembly Area

Insertion of a Bladder into the Shell

### **United States**

HYDAC Technology GmbH in D-66280 Sulzbach/Saar is authorized (effective August 21, 1985) by the "National Board of Boiler and Pressure Vessel Inspectors", in conformity with the appropriate specification of the American Society of Mechanical Engineers (ASME), to use the Code Symbol as a stamp and for registration purposes.

# **European Union Member States** (listed in bold below)

On 29 November 1999 the directive 97/23/EC (Pressure Equipment Directive) came into force and has been operative since 29 May 2002. This Directive applies to the design, manufacture, conformity assessment and circulation of pressure equipment and assemblies with a maximum permissible pressure of over 0.5 bar. It guarantees the free movement of goods within the European Community. EU member states must not prohibit, restrict or obstruct the circulation and commissioning of pressure equipment on account of pressure-related hazard, if the equipment complies with the requirements of the pressure equipment directive and has the CE mark, and is subject to a conformity assessment.

### **China** (Self quality for China)

HYDAC Technology GmbH is recognized as an importer of bladder, diaphragm and piston accumulators since 30.03.1998.

# Japan (KHK certificate)

For the Japanese market, HYDAC Technology GmbH is approved as a "self inspecting manufacturer". Therefore HYDAC is authorized to manufacture, test and import accumulators from outside Japan.

For details on other country certifications, please contact HYDAC

# **Complete Country Code Listing**


(European Union Member States listed in bold below)

| Algeria        | <u>S</u> 3                 |
|----------------|----------------------------|
| Argentina      | <u>S</u> 3                 |
| Australia      | <u>F<sup>1)</sup></u>      |
| Austria        | U<br>E<br>S <sup>3</sup>   |
| Bahamas        | <u> </u>                   |
| Barbados       | S <sup>3</sup>             |
| Belgium        | <u>U</u><br>S <sup>3</sup> |
| Bermuda        | S <sup>3</sup>             |
| Bolivia        | S <sup>3</sup>             |
| Brazil         | <u>U</u> 3                 |
| Canada         | S1                         |
| Chile          | <u>S</u> 3                 |
| China          | A9                         |
| Costa Rica     | E <sup>3)</sup>            |
| Czech Republic | U                          |
| Denmark        | U                          |
| Ecuador        | S <sup>3</sup>             |
| Egypt          | U                          |
| Finland        | U                          |
| France         | U                          |
| Germany        | <u>U</u><br>U              |
| Greece         | U                          |

| Hong Kong   | AS                            |
|-------------|-------------------------------|
| Hungary     | <u>U</u> 3                    |
| Iceland     | <u>U</u> 3                    |
| India       | <u>S</u> 3                    |
| Indonesia   | S <sup>3</sup>                |
| Iran        | U                             |
| Iraq        | <u>U</u><br>S <sup>3</sup>    |
| Ireland     | U                             |
| Israel      | U<br>U <sup>3</sup><br>U<br>P |
| Italy       | U                             |
| Japan       | P                             |
| Jordan      | S <u>3</u>                    |
| Korea       | <u>U</u><br>S <sup>3</sup>    |
| Kuwait      | S3                            |
| Lebanon     | S <u>3</u>                    |
| Libya       | S <sup>3</sup>                |
| Luxembourg  | <u>U</u><br>S <sup>3</sup>    |
| Malaysia    | S3                            |
| Mexico      | S3                            |
| New Zealand | T                             |
| Netherlands | U                             |
| Nigeria     | S3                            |
| Norway      | <u>U</u> 3                    |
|             |                               |

| Pakistan                 | <u>S</u> ₃                     |
|--------------------------|--------------------------------|
| Peru                     | S <sup>3)</sup>                |
| Philippines              | S <sup>3)</sup>                |
| Poland                   | U                              |
| Portugal                 | U                              |
| Puerto Rico              | U<br>U<br>S <sup>3)</sup>      |
| Romania                  | U                              |
| Russia (CIS)             | A6                             |
| Saudi Arabia             | S <sup>3)</sup>                |
| Singapore                | U                              |
| Slovakia                 | A8                             |
| South Africa             | <u>S</u> 3                     |
| Spain                    | U                              |
| Sudan                    | <u>S</u> 3)                    |
| Sweden                   | U<br>U<br>U<br>S <sup>3)</sup> |
| Switzerland              | U                              |
| Syria                    | U                              |
| Taiwan                   | <u>S</u> 3)                    |
| Thailand                 | S <sup>3)</sup>                |
| Tunisia                  | S <sup>3)</sup>                |
| Turkey<br>United Kingdom | U                              |
| United Kingdom           | U                              |
| USA                      | U<br>U<br>S<br>S <sup>3</sup>  |
| Venezuela                | <u>S</u> 3)                    |
| Yugoslavia               | U                              |
|                          |                                |

Dokioton



Assembly of Piston Accumulators



# HYDAC Overview

### **Bladder Accumulators**

The standard bladder accumulator consists of a "closed" rubber bladder inside a forged steel shell. A mechanically actuated valve closes when the fluid has been expelled, blocking off the fluid port, thereby enclosing the bladder within the shell. Where high discharge rates are required, a high flow model is available.

Applications with corrosive environments may require shells furnished with an internal and/or external coating or manufactured from stainless steel (see below).

The top repairable accumulator permits service and maintenance of the bladder without removing the accumulator from the hydraulic system.

When the pressure level of a system permits, a low pressure accumulator may be used. It is similar to a standard bladder accumulator, except that the poppet valve is replaced by a perforated plate covering the fluid port, and the shell may be of welded construction.

For applications requiring light weight a Kevlar wrapped accumulator shell is available. The wrapping supports the thinner metal shell to permit a substantial weight reduction.



Bottom Repairable Pressure: 3000 to 6000 psi Nominal Vol: 1 Qt. to 15 Gal.



Low Pressure
Pressure: 275 to 500 psi
Nominal Vol: 2.5 to 120 Gal.



Kevlar Wrapped (lightweight)



High Flow (to 2200 gpm)



Top Repairable

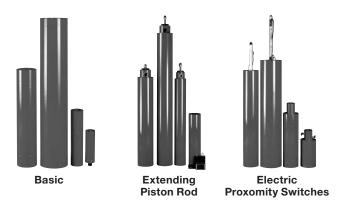


High Pressure (to 14,500 psi)

# **Diaphragm Accumulators**

A diaphragm accumulator performs the same function as a bladder accumulator, however, it operates like a membrane.

A poppet is molded into the bottom of the diaphragm to prevent its extrusion through the fluid port.


Diaphragm accumulators are frequently used where small volumes are required, light weight is important, a higher pressure ratio is required (up to 10:1) and low cost is a prime factor.

Applications with corrosive environments may require shells furnished with an internal and/or external coating or manufactured from stainless steel (see below).



### **Piston Accumulators**

A piston accumulator consists of a fluid section and a gas section with the piston acting as a gas-proof screen. The gas section is precharged with dry nitrogen gas. Auxiliary gas bottles are frequently used with piston accumulators to provide the required gas volume.



# Stainless Steel Accumulators

Stainless steel piston and diaphragm type accumulators are available in various sizes and pressure ranges. They offer special corrosion resistance, that is required for chemical and off-shore industries, petro-chemical and nuclear power plants and for food applications.



**Piston** 



Diaphragm



# **Dampeners**

Pulsations and shocks in hydraulic lines can result in costly damage to the piping and other system components. Reciprocating piston pumps by design create pressure pulsations, vibrations, and noise in the system. HYDAC suction stabilizers, pulsation dampeners and silencers, when applied to piston pumps, will reduce pulsations and noise. Furthermore, pressure pulsations can make control in servo systems nearly impossible without installing a pulsation dampener. HYDAC shock absorbers can be applied to greatly reduce shock wave energy. These waves can be harmful to all components in your hydraulic system. Shock waves can be created by closing a valve in a high flow line, such as one found in a petroleum terminal.



# **Accessories**

A full range of accessories for the installation, service and maintenance of all accumulators completes the program. In addition to the items shown, special valve blocks and adapters are available for your particular requirements













For more information on these accessories, see page 30

# Type Selection Considerations

- System Pressure
- System Temperature
- Volume / Usable Volume
- Flow Rate
- Pressure Ratio
- Installation Space and Position
- Chemical Compatibility

Use the comparison chart below as a quick reference guide.

# **Comparison of Standard Accumulators**

| Туре      | Nominal<br>Volume        | MAWP<br>(psi)                | Pressure<br>Ratio                | Flow<br>Rate         | Mounting<br>Position | Weight  | Cost                    | Design Consideration                                                                                                                                           |
|-----------|--------------------------|------------------------------|----------------------------------|----------------------|----------------------|---------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diaphragm | 5 to 230 in <sup>3</sup> | 3000, 5000<br>(up to 10,000) | 8:1<br>typically<br>(up to 10:1) | up to<br>60 gpm      | any                  | lowest  | lowest                  | <ul> <li>small volume and flow</li> <li>low weight</li> <li>compact design</li> <li>good for shock applications<br/>(good response characteristics)</li> </ul> |
| Blacder   | 1 qt.<br>to<br>15 gal    | 3000, 5000<br>(up to 10,000) | 4:1                              | up to<br>480 gpm     | prefer<br>vertical   | middle  | middle                  | <ul> <li>best general purpose</li> <li>wide range of standard sizes</li> <li>good for shock applications<br/>(good response characteristics)</li> </ul>        |
| Piston    | 1 qt.<br>to<br>100 gal   | 3000, 5000<br>(up to 10,000) | ∞:1                              | up to<br>2000<br>gpm | prefer<br>vertical   | highest | middle<br>to<br>highest | best for large stored volumes     best for high flow rates     not recommended for shock applications     best for use with backup nitrogen bottles            |

# HYDAC Safety Equipment

# Safety Equipment Overview

Hydro-pneumatic accumulators are pressure equipments subjected to legal pressure regulations. For the operation and the testing of accumulator equipped hydraulics, all local regulations have to be observed to avoid any risks and to guarantee the safety for the whole lifetime of the units.

Therefore "safety devices in accordance the PED 97/23/EC ANNEX 1:2.11" are available.

HYDAC offers various types of standard "safety devices", which should be used on the gas and fluid sides to protect against pressures in excess of design parameters.



# FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from HYDAC, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

HYDAC does not assume the risk of and shall not be liable for failure due to fire. HYDAC offers fire safety devices and recommends their use.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by HYDAC Corporation and its subsidiaries at any time without notice.

# Protection on the Fluid Side



The fluid side has to be protected against excessive pressures with approved safety valves. HYDAC provides the pressure relief valve (*DB12 Series*) which has a pressure setting (*set by HYDAC*) up to 5800 psi (400 bar). The sealed valves carries a CE mark, and is integrated into the safety and shut-off blocks in nominal sizes DN10 to DN32.

(See pages 31 - 36 for more details)

Note: The information in this brochure relates to the operating conditions and applications described. For applications or operating conditions not described, please contact Product Management at HYDAC.

# Safety Equipment HYDAC



WARNING: HYDAC does not assume the risk of and shall not be liable for failure due to fire. HYDAC offers fire safety devices and recommends their use.

# Protection on the Gas Side

Excess pressure on the gas side, especially by increased ambient temperatures, e.g. in case of a fire, has to be reduced completely or controlled, with safety devices.

To achieve this, HYDAC offers three different types of protection as standard:

# Thermal Fuse Caps



Protection by means of complete discharge in the case of excessive temperature and pressure.

Thermal Fuse Caps plugs are "safety devices" and are used for permissible working pressures of up to 690 bar in a temperature range of 14° to 176°F (-10° to 80°C). Their melting point is approximately 320° to 338°F (160° to 170°C) and bleeds off the gas pressure by discharging the nitrogen completely when the rise in temperature reaches unacceptable levels (e.g. in case of fire).

| Model Code                  | Part Number |
|-----------------------------|-------------|
| Thermal Fuse Caps 7/8-14UNF | 00363501    |

### **Burst Discs**



Protection by means of complete discharge when pressure exceeds the permitted level.

Burst discs are designed for different pressure settings, and will be supplied with Declaration of Conformity.

If their set pressure is exceeded, the burst disc is destroyed. The passage remains open and discharges the nitrogen completely.

Burst discs are made entirely of stainless steel and/or stainless steel / nickel alloy.

| Model Code              | Burst Pressure ±10% at 122°F | Part Number |
|-------------------------|------------------------------|-------------|
| Burst Disc Plug 1/4 NPT | 3045 psi (210 bar)           | 03156148    |
| Burst Disc Plug 1/4 NPT | 3626 psi (250 bar)           | 03156150    |
| Burst Disc Plug 1/4 NPT | 5076 psi (350 bar)           | 03156152    |
| Burst Disc Plug 1/4 NPT | 6527 psi (450 bar)           | 03156165    |
|                         |                              |             |

Note: higher pressures on request

### Gas Safety Valves



Protection by means of controlled pressure reduction when pressure exceeds unexpected the permitted level

The Gas Safety Valve (GSV6 Series) is a direct-operating, spring loaded safety valve with a setting range of 435 to 5366 psi (30 to 370 bar) within a temperature range of  $-4^{\circ}$  to  $176^{\circ}$ F ( $-20^{\circ}$  to  $80^{\circ}$ C).

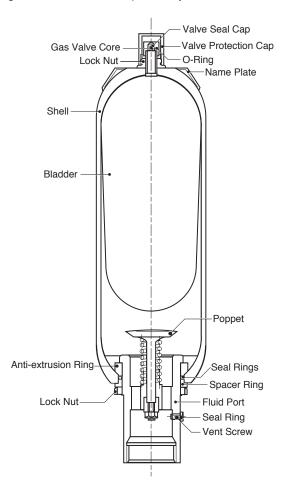
All the components of the valve are in stainless steel and therefore suitable for a variety of applications. The GSV6 Series will be supplied with Declaration of Conformity and an operating instruction manual. Due to its self-centering seal ring, fitting is simple and safe.

| Model Code                           | Pressure Setting ±5% | Part Number |
|--------------------------------------|----------------------|-------------|
| GSV6-10-CE0034.ISO4126-1.6.G.015.030 | 435 psi (30 bar)     | 03123965    |
| GSV6-10-CE0034.ISO4126-1.6.G.125.210 | 3045 psi (210 bar)   | 03124043    |
| GSV6-10-CE0034.ISO4126-1.6.G.205.350 | 5076 psi (350 bar)   | 03124057    |

Note: Others available on request

Note: The information in this brochure relates to the operating conditions and applications described. For applications or operating conditions not described, please contact Product Management at HYDAC.

# HYDAC Bladder Accumulators




# Description

The bladder accumulator consists of a fluid section and a gas section, with the bladder acting as a gas-proof screen. The fluid around the bladder is connected with the hydraulic circuit, so that the bladder accumulator draws in fluid when the pressure increases thus compressing the gas. When the pressure drops, the compressed gas expands and forces the stored fluid into the circuit.

#### Construction

HYDAC bladder accumulators consist of a welded or forged pressure vessel (shell), a bladder and ports for gas and fluid inlet. The gas and fluid sides are separated by the bladder.



#### Bladder Materials

Not all fluids are compatible with every elastomer at all temperatures. Therefore, HYDAC offers the following choice of elastomers:

- NBR (Standard Nitrile)
- LT-NBR (Low Temperature Nitrile)
- ECO (Epichlorohydrin)
- IIR (Butyl)
- FPM (Fluorelastomer)
- others (available upon request)

To determine which material is appropriate...

# ALWAYS REFER TO FLUID MANUFACTURER'S RECOMMENDATION

#### **Corrosion Protection**

For use with certain aggressive or corrosive fluids, or in a corrosive environment, HYDAC offers protective coatings and corrosive resistant materials (i.e. stainless steel) for the accumulator parts that come in contact with the fluid, or are exposed to the hostile environment.

### **Mounting Position**

HYDAC bladder accumulators can be installed vertically, at any angle, or horizontally depending upon the application. When installing vertically or at an angle, the fluid port must be at the bottom. On certain applications listed below, specific positions are preferable:

- Energy Storage: vertical
- Pulsation Damping: any position from vertical to horizontal
- Maintaining Constant Pressure: any position from vertical to horizontal
- Volume Compensation: any position from vertical to horizontal

### System Mounting

HYDAC bladder accumulators are designed to be screwed directly onto the system. We also recommend the use of our mounting components, which are detailed on page 43, to minimize risk of failure due to system vibrations.

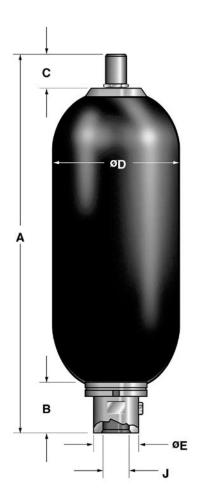
# **Applications**

Some common applications of bladder accumulators are:

- Agricultural Machinery & Equipment
- · Forestry Equipment
- · Oil Field & Offshore
- Machine Tools
- Mining Machinery & Equipment
- Mobile & Construction Equipment
- Off- Road Equipment

For specific examples of applications using bladder accumulators, please see page 52.

# Bladder Accumulators HYDAC

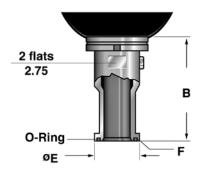

#### **Model Code** Series SB 330 = Bladder accumulator (3000 psi) SB600 =Bladder accumulator (5000 psi) Design (omit) Standard (bottom repairable) N Modified Flow (396 gpm) Н High Flow (480 gpm) TR Standard (top repairable) NTR Modified Flow (396 gpm) (top repairable) Size (see dimension tables on following pages for most common sizes) 1 4 1 gallon 6 1.5 gallons 10 2.5 gallons 20 5 gallons 32 10 gallons 42 11 gallons 54 15 gallons **Line Connection** Threaded F Flanged Gas Port -Standard model, HYDAC gas valve version 4 (8V1 - ISO 4570) 1 **Material Code Depending on Application** 112 Standard for oil service (mineral oil) Fluid Port -0 Synthetic coated carbon steel (internal & external for water service) 1 Carbon steel Stainless steel (high strength) 3 Stainless steel (corrosion resistance) 4 Chemically plated carbon steel (internal & external for water service) 6 Low temperature carbon steel (<-40°F) Shell 0 Synthetic coated carbon steel (internal & external for water service) 1 Carbon steel 2 Chemically plated carbon steel (internal & external for water service) 6 Low temperature carbon steel (<-40°F) Others available on request Bladder Compound **Typical Fluids Oper. Temp Range** Compound 2 NBR (Buna N) 5° to 180°F **NBR** mineral oils 3 ECO (Hydrin) 32° to 180°F water & water-glycols 4 IIR (Butyl) LT- NBR -50° to 180°F mineral oils LT-NBR (low temp. Buna) ECO...113 -20° to 250°F mineral oils mineral oils (with low temperature CS shell) 6 FPM (Fluoro-elastomer) ECO...663 -40° to 200°F IIR -20° to 200°F phosphate esters & brake fluids Others (available on request) 5° to 300°F chlorinated hydrocarbons Country of Installation S USA S<sub>1</sub> Canada (CRN certified) W1 ABS Type Approval DNV Type Approval W3 PED/CE (for other countries see page 2 for proper code designation) **Maximum Working Pressure** 3000 psi 5000 psi Fluid Port Connection A = BSPP (ISO 228)B = Metric (DIN 13) Threaded C = SAE (ANSI B1.1) D = NPT (ANSI B1.2) E = SAE 2" - 3000 psi (Code 61) Flanged F = SAE 1 1/2" - 6000 psi (Code 62)G = SAE 1 1/4" - 3000 psi (Code 61) (only available in sizes 4 liters & 6 liters) H = SAE 1" - 6000 psi (Code 62) (only available in sizes 1 liter & 4 liters) Model Codes containing RED selections are non-standard items - Contact HYDAC for information and availability

Not all combinations are available

Note: For Oil, Gas & Marine specific bladder accumulators please refer to page 48

# HYDAC Bladder Accumulators

# **Dimensions Bottom Repairable**




### **SB 330...** (3000 psi)

|      |                      | (0000 p3i)                       |              |                |                 |             |              |             |                 |        |                               |
|------|----------------------|----------------------------------|--------------|----------------|-----------------|-------------|--------------|-------------|-----------------|--------|-------------------------------|
| Size | Nom.<br>Vol.<br>gal. | Eff. Gas<br>Vol. in <sup>3</sup> | Weight       | A              | B <sup>(1</sup> | С           | ØD           | ØE          | Thread<br>SAE N |        | <b>Q</b> <sup>(2</sup><br>gpm |
| 1    | 1/4                  | 66                               | 10<br>(4.5)  | 12.0<br>(303)  | 2.0<br>(51)     | 2.3<br>(58) | 4.6<br>(117) | 1.4<br>(36) | 1 1/16-12<br>UN | 3/4"   | 60                            |
| 4    | 1                    | 226                              | 30<br>(14)   | 16.3<br>(415)  | 2.6<br>(66)     | 2.3<br>(58) | 6.6<br>(168) | 2.1<br>(53) | 1 5/8-12<br>UN  | 1 1/4" | 160                           |
| 6    | 1 1/2                | 340                              | 33<br>(15)   | 20.5<br>(521)  | 2.6<br>(66)     | 2.3<br>(58) | 6.6<br>(168) | 2.1<br>(53) | 1 5/8-12<br>UN  | 1 1/4" | 160                           |
| 10   | 2 1/2                | 566                              | 86<br>(39)   | 22.0<br>(559)  | 3.1<br>(80)     | 2.3<br>(58) | 9.1<br>(231) | 3.0<br>(76) | 1 7/8-12<br>UN  | 2"     | 240                           |
| 20   | 5                    | 1125                             | 140<br>(63)  | 34.5<br>(876)  | 3.1<br>(80)     | 2.3<br>(58) | 9.1<br>(231) | 3.0<br>(76) | 1 7/8-12<br>UN  | 2"     | 240                           |
| 32   | 10                   | 2080                             | 226<br>(102) | 54.7<br>(1390) | 3.1<br>(80)     | 2.3<br>(58) | 9.1<br>(231) | 3.0<br>(76) | 1 7/8-12<br>UN  | 2"     | 240                           |
| 42   | 11                   | 2320                             | 270 (123)    | 60.2<br>(1530) | 3.1<br>(80)     | 2.3<br>(58) | 9.1<br>(231) | 3.0<br>(76) | 1 7/8-12<br>UN  | 2"     | 240                           |
| 54   | 15                   | 3205                             | 330<br>(150) | 78.3<br>(1990) | 3.1<br>(80)     | 2.3<br>(58) | 9.1<br>(231) | 3.0<br>(76) | 1 7/8-12<br>UN  | 2"     | 240                           |

# **SB 600...** (5000 psi)

| Size | Nom.<br>Vol.<br>gal. | Eff. Gas<br>Vol. in <sup>3</sup> | Weight      | Α              | B <sup>(1</sup> | С           | ØD                   | ØE          | Thread J<br>SAE | <b>Q</b> <sup>(2</sup><br>gpm |
|------|----------------------|----------------------------------|-------------|----------------|-----------------|-------------|----------------------|-------------|-----------------|-------------------------------|
| 1    | 1/4                  | 66                               | 17<br>(7.7) | 13.2<br>(335)  | 2.4<br>(62)     | 2.3<br>(58) | 4.8 (122)            | 2.1<br>(53) | 1 5/8-12 UN     | 160                           |
| 4    | 1                    | 226                              | 33<br>(15)  | 16.3<br>(415)  | 2.5<br>(64)     | 2.3<br>(58) | 6.8 (173)            | 2.1<br>(53) | 1 5/8-12 UN     | 160                           |
| 10   | 2 1/2                | 566                              | 114<br>(52) | 22.4<br>(568)  | 3.1<br>(80)     | 2.8<br>(70) | 9.1-9.7<br>(232-247) | 3.0<br>(76) | 1 7/8-12 UN     | 240                           |
| 20   | 5                    | 1125                             | 162<br>(73) | 35.0<br>(888)  | 3.1<br>(80)     | 2.8<br>(70) | 9.1-9.7<br>(232-247) | 3.0<br>(76) | 1 7/8-12 UN     | 240                           |
| 32   | 10                   | 2080                             | 250 (113)   | 55.2<br>(1402) | 3.1<br>(80)     | 2.8<br>(70) | 9.1-9.7<br>(232-247) | 3.0<br>(76) | 1 7/8-12 UN     | 240                           |
| 54   | 15                   | 3180                             | 370 (168)   | 78.8<br>(2002) | 3.1<br>(80)     | 2.8<br>(70) | 9.1-9.7<br>(232-247) | 3.0<br>(76) | 1 7/8-12 UN     | 240                           |



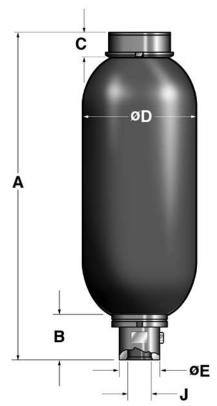
# **Split Flange Connection** (sizes 10 - 54)

| Series                 | В     | øΕ     | F Split Flange Connection | Q <sup>(2</sup> gpm |
|------------------------|-------|--------|---------------------------|---------------------|
| SB 330                 | 4.1   | 2.8    | SAE 2" – 3000 psi         | 240                 |
| SB 330 T <sup>(3</sup> | (104) | (71.4) | Code 61                   |                     |
| SB 600                 | 5.5   | 2.5    | SAE 1 1/2" – 5000 psi     | 240                 |
| SB 600 T <sup>(3</sup> | (140) | (63.5) | Code 62                   |                     |

Dimensions are for general information only, all critical dimensions should be verified. Dimensions are for general information only, all critical dimensions should be verified. Dimensions are in inches/(mm) and lbs/(kg)

NOTE: Higher pressure may be available. Please consult HYDAC for more information.

1) Applies to SAE thread type only. For Split Flange, see separate chart and illustration.


2) Maximum discharge flow rate recommended for vertically mounted accumulators.

3) sizes 20 to 54 only.

# Bladder Accumulators HYDAC



# Top Repairable and High Flow



# **SB 330 TR...** (3000 psi)

| ٥.   | Nom.         | Eff. Gas             |              |                |                 |             | ~-           | ~-          | Thread      | Thread J |                        |
|------|--------------|----------------------|--------------|----------------|-----------------|-------------|--------------|-------------|-------------|----------|------------------------|
| Size | Vol.<br>gal. | Vol. in <sup>3</sup> | Weight       | A              | B <sup>(1</sup> | С           | ØD           | ØE          | SAE         | NPTF     | Q <sup>(2</sup><br>gpm |
| 10   | 2 1/2        | 566                  | 94<br>(43)   | 21.3<br>(540)  | 3.1<br>(80)     | 1.6<br>(40) | 9.1<br>(231) | 3.0<br>(76) | 1 7/8-12 UN | 2"       | 240                    |
| 20   | 5            | 1125                 | 140<br>(63)  | 34.8<br>(883)  | 3.1<br>(80)     | 1.6<br>(40) | 9.1<br>(231) | 3.0<br>(76) | 1 7/8-12 UN | 2"       | 240                    |
| 32   | 10           | 2080                 | 226<br>(102) | 55.0<br>(1397) | 3.1<br>(80)     | 1.6<br>(40) | 9.1<br>(231) | 3.0<br>(76) | 1 7/8-12 UN | 2"       | 240                    |
| 42   | 11           | 2320                 | 270<br>(123) | 60.2<br>(1530) | 3.1<br>(80)     | 1.6<br>(40) | 9.1<br>(231) | 3.0<br>(76) | 1 7/8-12 UN | 2"       | 240                    |
| 54   | 15           | 3205                 | 330<br>(150) | 78.6<br>(1997) | 3.1<br>(80)     | 1.6<br>(40) | 9.1<br>(231) | 3.0<br>(76) | 1 7/8-12 UN | 2"       | 240                    |

# **SB 600 TR...** (5000 psi)

| Size | Nom.<br>Vol. gal. | Eff. Gas<br>Vol. in <sup>3</sup> | Weight       | A              | B <sup>(1</sup> | С           | ØD                   | ØE          | Thread J<br>SAE | Q <sup>(2</sup><br>gpm |
|------|-------------------|----------------------------------|--------------|----------------|-----------------|-------------|----------------------|-------------|-----------------|------------------------|
| 20   | 5                 | 1125                             | 172<br>(78)  | 33.5<br>(851)  | 3.1<br>(80)     | 1.6<br>(40) | 9.1-9.7<br>(232-247) | 3.0<br>(76) | 1 7/8-12 UN     | 240                    |
| 32   | 10                | 2080                             | 260<br>(118) | 53.7<br>(1364) | 3.1<br>(80)     | 1.6<br>(40) | 9.1-9.7<br>(232-247) | 3.0<br>(76) | 1 7/8-12 UN     | 240                    |
| 54   | 15                | 3205                             | 380<br>(172) | 77.3<br>(1964) | 3.1<br>(80)     | 1.6<br>(40) | 9.1-9.7<br>(232-247) | 3.0<br>(76) | 1 7/8-12 UN     | 240                    |

# **SB 330 NTR...** (3000 psi, High Flow)

| Size | Nom.<br>Vol. gal. | Eff. Gas<br>Vol. in <sup>3</sup> | Weight       | A              | B <sup>(1</sup> | С           | ØD           | ØE          | Thread J SAE | Q <sup>(2</sup><br>gpm |
|------|-------------------|----------------------------------|--------------|----------------|-----------------|-------------|--------------|-------------|--------------|------------------------|
| 20   | 5                 | 1125                             | 161<br>(73)  | 36.0<br>(914)  | 5.3<br>(135)    | 1.6<br>(40) | 9.1<br>(232) | 3.8<br>(97) | 1 7/8-12 UN  | 396                    |
| 32   | 10                | 2080                             | 247<br>(112) | 57.2<br>(1409) | 5.3<br>(135)    | 1.6<br>(40) | 9.1<br>(232) | 3.8<br>(97) | 1 7/8-12 UN  | 396                    |
| 54   | 15                | 3205                             | 352<br>(160) | 79.8<br>(2027) | 5.3<br>(135)    | 1.6<br>(40) | 9.1<br>(232) | 3.8<br>(97) | 1 7/8-12 UN  | 396                    |

Dimensions are for general information only, all critical dimensions should be verified.

Dimensions are in inches/(mm) and lbs/(kg)

<sup>1)</sup> Applies to SAE thread type only. For Split Flange, see chart and illustration on previous page.

2) Maximum discharge flow rate recommended for vertically mounted accumulators.

# **HYDAD** Diaphragm Accumulators

# SBO Series Diaphragm Accumulators

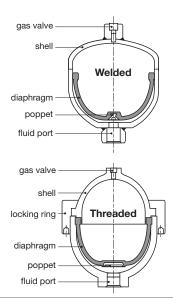


# **Description**

HYDAC diaphragm accumulators utilize the compressibility of a gas (nitrogen) in storing hydraulic energy. The gas is required because fluids are practically incompressible and thus, can not store energy by themselves. The diaphragm is utilized to separate the gas and the fluid sides of the accumulator.

The diaphragm accumulator functions by drawing in fluid from the hydraulic circuit when the pressure increases and thus, compresses the gas. It returns this energy to the circuit as the pressure decreases by the expansion of the gas.

A poppet is incorporated into the diaphragm to prevent its extrusion through the fluid port.


HYDAC manufactures two types of diaphragm accumulators:

- welded (non-repairable)
- threaded (repairable)

These have been successfully applied to both industrial and mobile applications for energy storage, maintaining pressure, leakage compensation, and vehicle hydraulic systems (e.g. brake and suspension).

#### Construction

Both types of diaphragm accumulators have the same basic construction. The difference is in the shell. The welded version has a shell that is electron-beam welded, and therefore cannot be repaired. The threaded type has a shell made up of two halves (top and bottom) which are held together by a threaded locking ring.



### Diaphragm Materials

Not all fluids are compatible with every elastomer at all temperatures. Therefore, HYDAC offers the following choice of elastomers:

- NBR (Standard Nitrile)
- LT-NBR (Low Temperature Nitrile)
- ECO (Epichlorohydrin)
- IIR (Butyl)
- FPM (Fluorelastomer)
- others (available upon request)

To determine which material is appropriate...

ALWAYS REFER TO FLUID MANUFACTURER'S RECOMMENDATION

### **Corrosion Protection**

For use with certain aggressive or corrosive fluids, or in a corrosive environment, HYDAC offers protective coatings and corrosive resistant materials (i.e. stainless steel) for the accumulator parts that come in contact with the fluid, or are exposed to the hostile environment

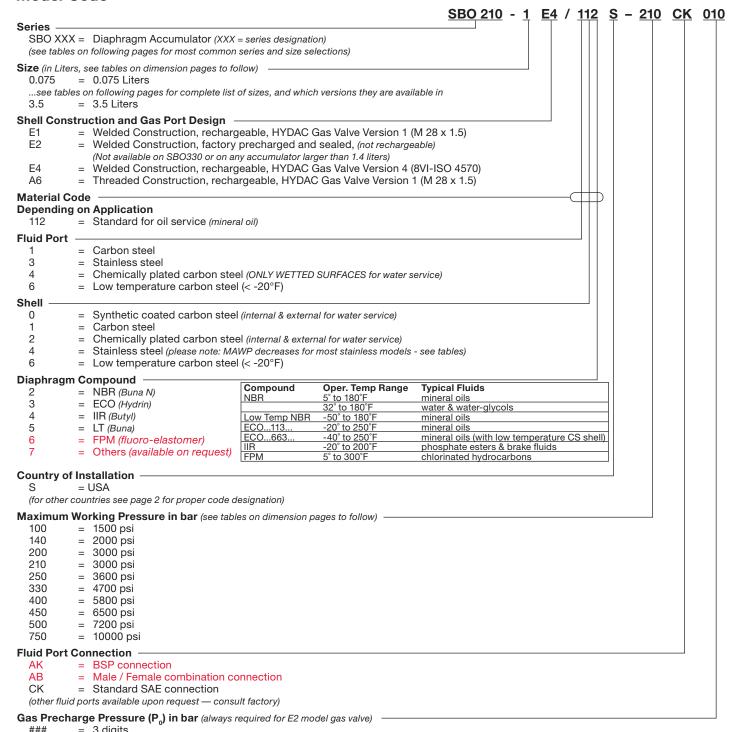
# Mounting Position

Diaphragm accumulators by design may be mounted in any position. In systems where contamination is a problem, we recommend a vertical mount with fluid port oriented downward.

# System Mounting

HYDAC diaphragm accumulators are designed to be screwed directly onto the system. We also recommend the use of our mounting components, which are detailed on page 43, to minimize risk of failure due to system vibrations.

#### **Applications**

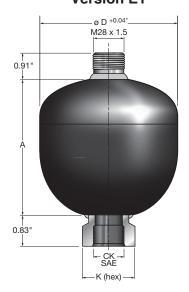

Some common applications of diaphragm accumulators are:

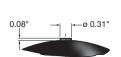
- Agricultural Machinery & Equipment
- · Forestry Equipment
- Machine Tools
- Mining Machinery & Equipment
- Mobile & Construction Equipment
- · Off- Road Equipment

For specific examples of applications using diaphragm accumulators, please see page 52.

# Diaphragm Accumulators HYDAC

#### **Model Code**

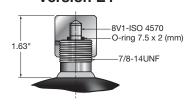


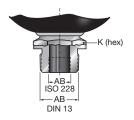


Model Codes containing RED selections are non-standard items – Contact HYDAC for information and availability

Not all combinations are available

# HYDAC Diaphragm Accumulators

# Dimensions Non-Repairable Welded Diaphragm Accumulators Version E1 Version E2




Not available on SBO330 or on any accumulator larger than 1.4 liters.

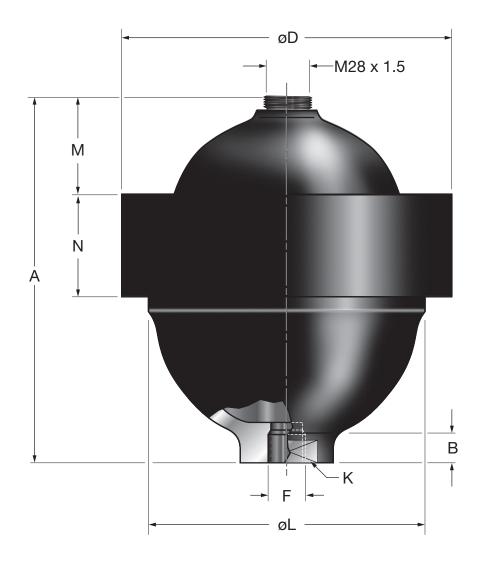


#### **Version E4**





| Series  | Max.                           | Size     | Effective               | MAWP psi/                              | Weight         | Α              | øD <sup>(2</sup> | F Thread  CK AK AB AB |           |           |           | K            | Q   |
|---------|--------------------------------|----------|-------------------------|----------------------------------------|----------------|----------------|------------------|-----------------------|-----------|-----------|-----------|--------------|-----|
| Series  | p <sub>2</sub> :p <sub>0</sub> | (liters) | Gas Vol in <sup>3</sup> | (bar)                                  | Weight         | <u> </u>       | , SD.            | (SAE)                 | (ISO 228) | (ISO 228) | (DIN 13)  | (hex)        | gpm |
| SBO 250 | 8:1                            | 0.075    | 5                       | 3600<br>(250)                          | 1.5<br>(0.7)   | 2.68<br>(68)   | 2.52<br>(64)     | 9/16-18 UNF           | G 1/2     | N/A       | N/A       | 1.18<br>(30) | 10  |
| SBO 210 | 8:1                            | 0.16     | 10                      | 2600/(180) <sup>(1</sup><br>3000/(210) | 1.8<br>(0.8)   | 3.15<br>(80)   | 2.91<br>(74)     | 9/16-18 UNF           | G 1/2     | N/A       | N/A       | 1.18<br>(30) | 10  |
| SBO 210 | 8:1                            | 0.32     | 20                      | 2400/(160) <sup>(1</sup><br>3000/(210) | 2.9<br>(1.3)   | 3.66<br>(93)   | 3.66<br>(93)     | 3/4-16 UNF            | G 1/2     | N/A       | N/A       | 1.42<br>(36) | 25  |
| SBO 210 | 8:1                            | 0.5      | 30                      | 3000<br>(210)                          | 3.7<br>(1.7)   | 4.35<br>(124)  | 4.13<br>(105)    | 3/4-16 UNF            | G 1/2     | N/A       | N/A       | 1.42<br>(36) | 25  |
| SBO 330 | 8:1                            | 0.6      | 36                      | 4700<br>(330)                          | 7.3<br>(3.3)   | 5.04<br>(128)  | 4.53<br>(115)    | 3/4-16 UNF            | G 1/2     | G 1/2     | M33 x 1.5 | 1.42<br>(36) | 25  |
| SBO 210 | 8:1                            | 0.75     | 45                      | 2000/(140) <sup>(1</sup><br>3000/(210) | 6.2<br>(2.8)   | 4.88<br>(124)  | 4.76<br>(121)    | 3/4-16 UNF            | G 1/2     | G 1/2     | M33 x 1.5 | 1.42<br>(36) | 25  |
| SBO 330 | 8:1                            | 0.75     | 45                      | 4700<br>(330)                          | 8.9<br>(4.0)   | 4.78<br>(122)  | 4.96<br>(126)    | 3/4-16 UNF            | G 1/2     | G 1/2     | M33 x 1.5 | 1.42<br>(36) | 25  |
| SBO 200 | 8:1                            | 1        | 60                      | 3000<br>(210)                          | 7.9<br>(3.6)   | 5.39<br>(137)  | 5.35<br>(136)    | 3/4-16 UNF            | G 1/2     | G 1/2     | M33 x 1.5 | 1.42<br>(36) | 25  |
| SBO 140 | 8:1                            | 1.4      | 85                      | 2000<br>(140)                          | 8.6<br>(3.9)   | 5.91<br>(150)  | 5.71<br>(145)    | 3/4-16 UNF            | G 1/2     | G 1/2     | M33 x 1.5 | 1.42<br>(36) | 25  |
| SBO 210 | 8:1                            | 1.4      | 85                      | 3000<br>(210)                          | 11.9<br>(5.4)  | 6.14<br>(156)  | 5.91<br>(150)    | 3/4-16 UNF            | G 1/2     | G 1/2     | M33 x 1.5 | 1.42<br>(36) | 25  |
| SBO 330 | 8:1                            | 1.4      | 85                      | 4700<br>(330)                          | 16.6<br>(7.5)  | 6.33<br>(160)  | 6.1<br>(155)     | 3/4-16 UNF            | G 1/2     | G 1/2     | M33 x 1.5 | 1.42<br>(36) | 25  |
| SBO 100 | 8:1                            | 2        | 120                     | 1500/(100) <sup>(1</sup><br>1500/(100) | 8.8<br>(4.0)   | 6.57<br>(167)  | 6.30<br>(160)    | 1 1/16-12<br>UNF      | G 3/4     | G 3/4     | M45 x 1.5 | 1.81<br>(46) | 40  |
| SBO 210 | 8:1                            | 2        | 120                     | 3000<br>(210)                          | 14.6<br>(6.6)  | 6.81<br>(173)  | 6.57<br>(167)    | 1 1/16-12<br>UNF      | G 3/4     | G 3/4     | M45 x 1.5 | 1.81<br>(46) | 40  |
| SBO 330 | 8:1                            | 2        | 120                     | 4700<br>(330)                          | 17.7<br>(8.0)  | 7.12<br>(180)  | 6.77<br>(172)    | 1 1/16-12<br>UNF      | G 3/4     | G 3/4     | M45 x 1.5 | 1.81<br>(46) | 40  |
| SBO 210 | 4:1                            | 2.8      | 170                     | 3000<br>(210)                          | 18.0<br>(8.2)  | 8.94<br>(227)  | 6.57<br>(167)    | 1 1/16-12<br>UNF      | G 3/4     | G 3/4     | M45 x 1.5 | 1.81<br>(46) | 40  |
| SBO 250 | 4:1                            | 3.5      | 230                     | 3000<br>(210)                          | 24.6<br>(11.2) | 11.14<br>(283) | 6.69<br>(170)    | 1 1/16-12<br>UNF      | G 3/4     | G 3/4     | M45 x 1.5 | 1.81<br>(46) | 40  |
| SBO 330 | 4:1                            | 3.5      | 230                     | 4700<br>(330)                          | 30.6<br>(13.8) | 10.78<br>(274) | 6.77<br>(172)    | 1 1/16-12<br>UNF      | G 3/4     | G 3/4     | M45 x 1.5 | 1.81<br>(46) | 40  |


Dimensions are for general information only, all critical dimensions should be verified.

Dimensions are in inches/(mm) and lbs/(kg)

<sup>1)</sup> Stainless steel version for chemical, water, and oil service

# Diaphragm Accumulators HYDAC

# Repairable Threaded Diaphragm Accumulators



| Carias  | Series Max. Size               |          |                         | MAWP                                    | Wt.            | A             | В            | Ø D(2         | Threa     | d F   | К            | øL            | М            | N            | Q   |
|---------|--------------------------------|----------|-------------------------|-----------------------------------------|----------------|---------------|--------------|---------------|-----------|-------|--------------|---------------|--------------|--------------|-----|
| Series  | p <sub>2</sub> :p <sub>0</sub> | (liters) | Gas Vol in <sup>3</sup> | psi/(bar)                               | W.             | _ A           | В            | יט ש י        | SAE       | BSPP  | r.           | ØL            | IVI          | IN           | gpm |
| SBO 500 | 10 : 1                         | 0.1      | 6                       | 7200<br>(500)                           | 4.2<br>(1.9)   | 4.33<br>(110) | 1.18<br>(30) | 3.74<br>(95)  | 3/4-16    | G 1/2 | 1.26<br>(68) | 2.68<br>(68)  | 0.87<br>(22) | 1.38<br>(35) | 25  |
| SBO 500 | 10 : 1                         | 0.25     | 15                      | 5000/(350) <sup>(1</sup><br>7200/(500)  | 8.6<br>(3.9)   | 5.04<br>(128) | 0.79<br>(20) | 4.53<br>(115) | 3/4-16    | G 1/2 | 1.42<br>(36) | 3.62<br>(92)  | 0.71<br>(18) | 2.17<br>(55) | 25  |
| SBO 750 | 10 : 1                         | 0.25     | 15                      | 8700/(600) <sup>(1</sup><br>10000/(750) | 19.8<br>(9.0)  | 5.35<br>(136) | 0.43<br>(11) | 6.02<br>(153) | 3/4-16    | G 1/2 | 1.42<br>(36) | 4.49<br>(114) | 0.59<br>(15) | 2.48<br>(63) | 25  |
| SBO 450 | 10 : 1                         | 0.6      | 36                      | 3600/(250) <sup>(1</sup><br>4700/(330)  | 12.6<br>(5.7)  | 6.69<br>(170) | 0.75<br>(19) | 5.51<br>(140) | 3/4-16    | G 1/2 | 1.61<br>(41) | 4.53<br>(115) | 1.77<br>(45) | 2.24<br>(57) | 25  |
| SBO 210 | 10 : 1                         | 1.3      | 80                      | 3000<br>(210)                           | 18.7<br>(8.5)  | 7.48<br>(190) | 0.31<br>(8)  | 6.69<br>(170) | 3/4-16    | G 1/2 | 1.26<br>(32) | 5.71<br>(145) | 2.24<br>(57) | 2.17<br>(55) | 25  |
| SBO 400 | 10 : 1                         | 1.3      | 80                      | 5800<br>(400)                           | 24.7<br>(11.2) | 7.75<br>(197) | 1.10<br>(28) | 7.91<br>(201) | 3/4-16    | G 3/4 | 1.97<br>(50) | 6.30<br>(160) | 1.97<br>(50) | 2.56<br>(65) | 25  |
| SBO 250 | 10 : 1                         | 2        | 120                     | 2600/(180) <sup>(1</sup><br>3600/(250)  | 25.1<br>(11.4) | 8.93<br>(227) | 0.67<br>(17) | 7.91<br>(201) | 1 1/16-12 | G 3/4 | 1.61<br>(41) | 6.61<br>(168) | 2.44<br>(62) | 2.52<br>(64) | 40  |

Dimensions are for general information only, all critical dimensions should be verified.

Dimensions are in inches/(mm) and lbs/(kg)

<sup>1)</sup> Only available in stainless steel construction

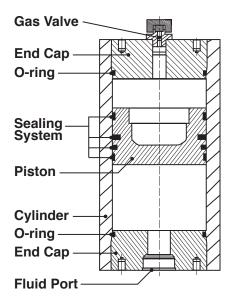
# HYDAD Piston Accumulators

# **SK Series Piston Accumulators**



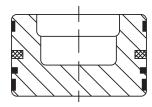
# Description

Fluids are practically incompressible and cannot therefore store pressure energy. The compressibility of a gas (nitrogen) is utilized in hydro-pneumatic accumulators for storing fluids. HYDAC piston accumulators are designed on this principle, using nitrogen as the compressible medium.


A piston accumulator consists of a fluid section and a gas section with the piston acting as a gas proof screen. The gas section is precharged with dry nitrogen gas.

The fluid section is connected to the hydraulic circuit so that the piston accumulator draws in fluid when the pressure increases thus compressing the gas. When the pressure drops, the compressed gas expands and forces the stored fluid into the circuit.

#### Construction

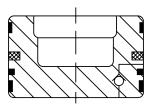

HYDAC piston accumulators consist of:

- A cylinder with a finely finished internal surface
- An end cap on the gas side and fluid side, sealed with o-rings
- A light weight metal piston
- A variety of sealing systems are available depending on the application



# Piston Types

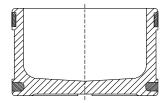
TYPE 2




#### **Application**

Low-friction design for higher piston speeds, slow movements without stick-slip effect and high number of actuations (millions). Actual cycles achieved will vary with operating parameters.

Notes: Filtration ≤ 10 µm absolute. (ISO 18/16/13) Max. continuous velocity = 12 fps


#### **TYPE 2 with Check Valve**



#### **Application**

The addition of a check valve drastically reduces the oil pumping to the gas side of the piston.

#### TYPE 3



#### **Application**

Actual cycles achieved will vary with operating parameters.

Notes: Filtration  $\leq$  10  $\mu$ m absolute. (ISO 18/16/13)

Max. continuous velocity = 3 fps

# Sealing Systems

Precise information about the proposed operating conditions is required in order to select the most appropriate sealing system. Important criteria for this selection are:

- Number of actuations or cycles
- Piston speed
- Temperature fluctuation
- Operating fluid
- · Cleanliness of fluid
- · Maintenance requirements

# Piston Accumulators HYDAC

#### Seal Materials

The following sealing elastomers are available, depending on the operating conditions:

- NBR (acrylic nitrile butadiene rubber)
- FPM (fluoro-elastomer)
- PUR (polyurethane)

Suitable materials are also available for low temperature applications.

#### **Corrosion Protection**

For use with certain aggressive or corrosive fluids, or in a corrosive environment, HYDAC offers protective coatings and corrosive resistant materials (i.e. stainless steel) for the accumulator parts that come in contact with the fluid, or are exposed to the hostile environment.

# System Mounting

HYDAC piston accumulators may operate in any position. Vertical installation is preferable with the gas side up. We recommend the use of our mounting components, which are detailed on page 43, to minimize risk of failure due to system vibrations.

# Advantages of HYDAC Piston Accumulators

- Complete size range from 1 qt. to 100 gallons nominal volume
- High ratios possible between precharge pressure and maximum working pressure
- High flow rates up to 4700 gpm from one accumulator
- Power savings.
- Gas-proof and leak-free.
- No sudden discharge of gas when seal is worn.
- Space efficient.
- Piston location monitoring available.

# Advantages of Using the Low-friction Sealing System (type 2):

- · Minimum friction.
- Suitable for low pressure differentials.
- No start-up friction, no stick-slip.
- Low noise, no vibration.
- High piston speeds up to 12 fps continuous
- Improved accumulator efficiency.
- High life expectancy
- Low maintenance requirements.

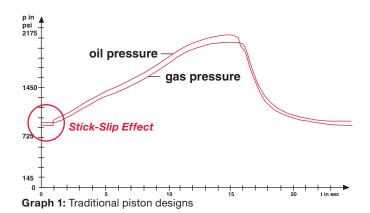
#### Effects of Seal Friction

The permissible piston velocity depends on the sealing friction. Higher piston velocities are possible where there is less sealing friction.

HYDAC piston accumulators with low friction piston seals allow continuous operating velocities of up to 12 fps with short excursions to 15 fps (see type 2 piston).

Small pressure differentials between gas and oil side improve the effectiveness of HYDAC piston accumulators. To emphasize the friction effect on the pressure curve

during an accumulation cycle, measurements with various sealing systems are illustrated.

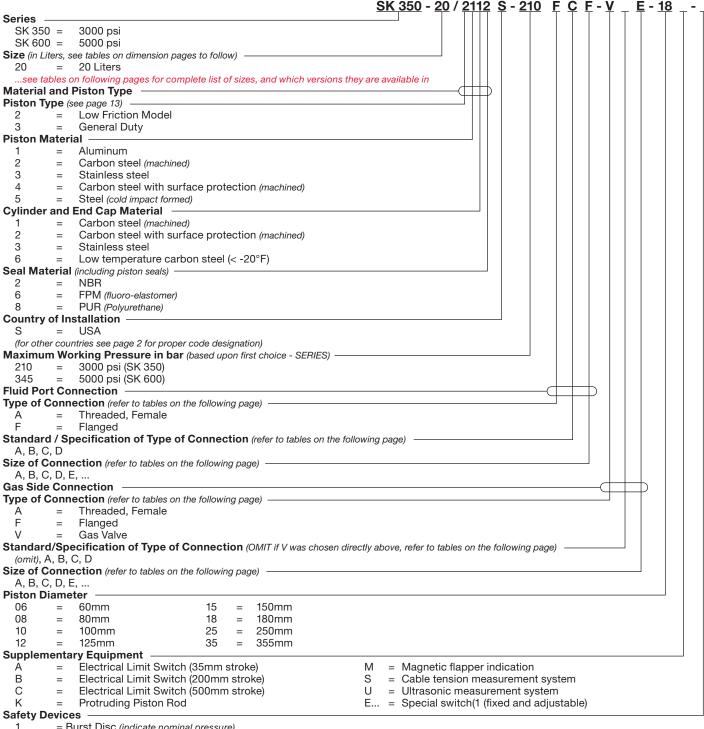

The measurement graphs below are a true representation of the gas and oil pressure of piston accumulators with

different sealing systems. The comparison of these two measurements clearly shows the difference in the pressure differential between gas and oil side:

Graph 1: ∆p max. ≈ 125 psi

Graph 2: ∆p max. ≈ 14.5 psi

The effect of the sealing friction on the working pressure is particularly striking in traditional piston designs. Abrupt piston movements (the stick-slip effect) are caused by the seal friction as shown in Graph 1. The low sealing friction of HYDAC type 2 pistons drastically reduces the stick-slip effect therefore maximizing piston responsiveness.






Graph 2: Piston Type 2 (low friction model)

# YDAC Piston Accumulators

# **Model Code**



- = Burst Disc (indicate nominal pressure)
- 2 = Gas safety valve
- = Thermal fuse cap (see page 30)

Model Codes containing RED selections are non-standard items - Contact HYDAC for information and availability Not all combinations are available

1) Consult HYDAC for assistance with specifying switch details

# Piston Accumulators HYDAC

# Model Code Support Tables for Gas & Fluid Connections

# Female Threaded Connections: $A^{(1)}$ Sample Code = $A^{(1)}$ $A^{(2)}$

| Code | Type of Connection                       | Α              | В             | С              | D             | E              | F             | G             | н               | J               | К               | L             | М             |
|------|------------------------------------------|----------------|---------------|----------------|---------------|----------------|---------------|---------------|-----------------|-----------------|-----------------|---------------|---------------|
| Α    | BSPP<br>(ISO 228)                        | G1/8           | G1/4          | G3/8           | G1/2          | G3/4           | G1            | G1 1/4        | G1 1/2          | G2              | G2 1/2          | G3            | N/A           |
| В    | DIN 13 or<br>ISO 965/1<br>(Metric)       | M10x1          | M12x1.5       | M14x1.5        | M16x1.5       | M18x1.5        | M22x1.5       | M27x2         | M33x2           | M42x2           | M48x2           | M60x2         | N/A           |
| С    | ANSI B1.1<br>(UN2B)<br>Seal SAE J<br>514 | 5/16-<br>24UNF | 3/8-<br>24UNF | 7/16-<br>20UNF | 1/2-<br>20UNF | 9/16-<br>18UNF | 3/4-<br>16UNF | 7/8-<br>14UNF | 1 1/16-<br>12UN | 1 3/16-<br>12UN | 1 5/16-<br>12UN | 1 5/8<br>12UN | 1 7/8<br>12UN |
| D    | ANSI<br>B1.20.3                          | 1/16-27        | 1/8-27        | 1/4-18         | 3/8-18        | 1/2-14         | 3/4-14        | 1-11 1/2      | 1 1/4-11 1/2    | 1 1/2-11 1/2    | 2-11 1/2        | 2 1/2-8       | N/A           |

<sup>1)</sup> use "A" as the first character of the connection code for all Female Threaded Connections.

# Flange Connections: $F^{(4)}$ Sample Code = $F^{(4)}$ $C^{(5)}$ $B^{(6)}$

| Code | Type of Connection        | Α    | В    | С  | D      | E      | F  | G      | н   | J      | К   | L   | М   |
|------|---------------------------|------|------|----|--------|--------|----|--------|-----|--------|-----|-----|-----|
| С    | SAE Code 61<br>(3000 psi) | 1/2" | 3/4" | 1" | 1 1/4" | 1 1/2" | 2" | 2 1/2" | 3"  | 3 1/2" | 4"  | 5"  | N/A |
| D    | SAE Code 62<br>(6000 psi) | 1/2" | 3/4" | 1" | 1 1/4" | 1 1/2" | 2" | N/A    | N/A | N/A    | N/A | N/A | N/A |

<sup>4)</sup> use "F" as the first character of the connection code for all Flange Connections.

# Gas Valve Connections: $V^{(7)}$ Sample Code = $V^{(7)}$ (omit)<sup>(8)</sup> $A^{(9)}$

| Code | Type of Connection                                                  |
|------|---------------------------------------------------------------------|
| Α    | G 3/4 male with M28x1.5/M8 (standard HYDAC gas valve version 1)     |
| E    | G 3/4 male with 7/8-14 UNF-VG8 (standard HYDAC gas valve version 4) |

<sup>7)</sup> use "V" as the first character of the connection code for all Gas Valve Connections.

# Other Connections & Custom Solutions are Available:

HYDAC has the capabilities to produce accumulators with many other types of connections. The options listed above are simply the most common, and most readily available. Other connection options include:

- Male threads
- Protruding flanges
- ANSI flanges
- DIN flanges
- Autoclave
- High Pressure Block FLANGE (Rexroth, AVIT, HAVIT) PN320

Custom solutions that incorporate valve/manifold assemblies are also available, for more information on special connections and custom solutions, consult factory.

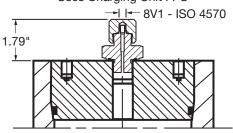
<sup>2)</sup> Enter the letter of the ROW (red) as the second character of the connection code.

<sup>3)</sup> Enter the letter of the COLUMN (gray) as the third character of the connection code.

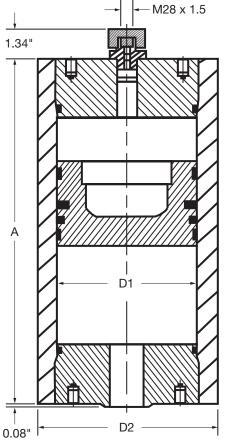
<sup>5)</sup> Enter the letter of the ROW (red) as the second character of the connection code.

<sup>6)</sup> Enter the letter of the COLUMN (gray) as the third character of the connection code.

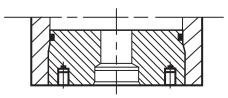
<sup>8)</sup> OMIT the second character of the connection code.


<sup>9)</sup> Enter the letter of the ROW as the third character of the connection code.

# HYDAC Piston Accumulators


# SK 350 Series

# Type 2 Dimensions


Gas Valve Version 4 (code designation VE) Uses Charging Unit FPS



Gas Valve Version 1 (code designation VA) Uses Charging Unit FPK



Flange Connection (code designation F\_\_) (specified by model code)



**Threaded Connection** (code designation A\_ \_) (specified by model code)

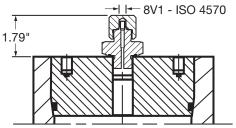
# 3000 psi maximum working pressure

| <u> </u>              |                             |                             |                       |                          |                          |  |  |  |  |  |
|-----------------------|-----------------------------|-----------------------------|-----------------------|--------------------------|--------------------------|--|--|--|--|--|
| <b>Size</b><br>liters | Effective Gas<br>Volume gal | <b>Weight</b><br>lbs / (kg) | <b>A</b><br>in / (mm) | ø <b>D1</b><br>in / (mm) | ø <b>D2</b><br>in / (mm) |  |  |  |  |  |
| 10                    | 2.5                         | 233 / (107)                 | 28 / (711)            |                          |                          |  |  |  |  |  |
| 16                    | 4                           | 283 / (128)                 | 37.2 / (945)          |                          |                          |  |  |  |  |  |
| 20                    | 5                           | 316 / (143)                 | 43.4 / (1102)         | 7.09                     | 8.62                     |  |  |  |  |  |
| 30                    | 7.5                         | 400 / (181)                 | 58.9 / (1496)         | (180)                    | (219)                    |  |  |  |  |  |
| 40                    | 10                          | 482 / (219)                 | 74.4 / (1890)         |                          |                          |  |  |  |  |  |
| 50                    | 12.5                        | 566 / (257)                 | 89.9 / (2283)         |                          |                          |  |  |  |  |  |
| 40                    | 10                          | 788 / (357)                 | 49 / (1245)           |                          |                          |  |  |  |  |  |
| 50                    | 12.5                        | 882 / (400)                 | 57.1 / (1450)         |                          |                          |  |  |  |  |  |
| 60                    | 15                          | 974 / (442)                 | 65 / (1651)           |                          |                          |  |  |  |  |  |
| 75                    | 20                          | 1114 / (505)                | 77.1 / (1958)         |                          | 12.21                    |  |  |  |  |  |
| 100                   | 25                          | 1347 / (611)                | 97.1 / (2466)         | 9.84                     |                          |  |  |  |  |  |
| 115                   | 30                          | 1488 / (675)                | 109.2 / (2774)        | (250)                    | (310)                    |  |  |  |  |  |
| 135                   | 35                          | 1676 / (760)                | 125.3 / (3183)        |                          |                          |  |  |  |  |  |
| 150                   | 40                          | 1816 / (824)                | 137.4 / (3490)        |                          |                          |  |  |  |  |  |
| 170                   | 45                          | 2004 / (909)                | 152.4 / (3871)        |                          |                          |  |  |  |  |  |
| 190                   | 50                          | 2194 / (994)                | 168.4 / (4277)        |                          |                          |  |  |  |  |  |
| 100                   | 25                          | 1859 / (843)                | 61.9 / (1572)         |                          |                          |  |  |  |  |  |
| 115                   | 30                          | 1986 / (901)                | 67.9 / (1725)         |                          |                          |  |  |  |  |  |
| 150                   | 40                          | 2287 / (1037)               | 81.8 / (2078)         | 13.98                    | 17.09                    |  |  |  |  |  |
| 190                   | 50                          | 2630 / (1193)               | 97.7 / (2482)         | (355)                    | (434)                    |  |  |  |  |  |
| 250                   | 65                          | 3144 / (1426)               | 121.6 / (3089)        |                          |                          |  |  |  |  |  |
| 300                   | 80                          | 3572 / (1620)               | 141.5 / (3594)        |                          |                          |  |  |  |  |  |

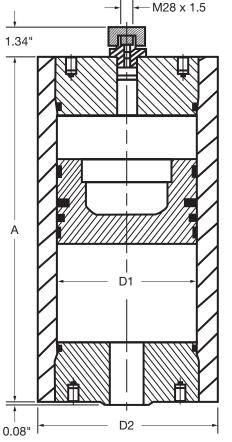
# 5000 psi maximum working pressure

| <b>Size</b><br>liters | Effective Gas<br>Volume gal | <b>Weight</b><br>lbs / (kg) | <b>A</b><br>in / (mm) | ø <b>D1</b> in / (mm) | <b>ø D2</b><br>in /<br>(mm) |
|-----------------------|-----------------------------|-----------------------------|-----------------------|-----------------------|-----------------------------|
| 0.2                   | 0.05                        | 15 / (7)                    | 8.6 / (218)           |                       |                             |
| 0.5                   | 0.125                       | 20 / (9)                    | 12.8 / (325)          | 2.36 (60)             | 3.15<br>(80)                |
| 1                     | 0.25                        | 26 / (12)                   | 19.8 / (502)          | (00)                  | (00)                        |
| 0.5                   | 0.125                       | 24 / (11)                   | 9.8 / (250)           |                       |                             |
| 1                     | 0.25                        | 29 / (13)                   | 13.8 / (350)          | 3.15<br>(80)          | 3.94<br>(100)               |
| 2                     | 0.5                         | 40 / (18)                   | 21.7 / (550)          | (00)                  | (100)                       |
| 2.5                   | 0.625                       | 62 / (28)                   | 20.9 / (532)          |                       |                             |
| 5                     | 1.25                        | 88 / (40)                   | 33.5 / (850)          | 3.94 (100)            | 4.96<br>(126)               |
| 7.5                   | 1.875                       | 115 / (52)                  | 46.1 / (1170)         | (100)                 | (120)                       |
| 2                     | 0.5                         | 82 / (37)                   | 13.6 / (345)          |                       |                             |
| 5                     | 1.25                        | 115 / (52)                  | 23.2 / (590)          | 4.92<br>(125)         | 6.30<br>(160)               |
| 15                    | 3.75                        | 225 / (102)                 | 55.3 / (1405)         | (120)                 | (100)                       |
| 6                     | 1.5                         | 128 / (58)                  | 21.5 / (545)          |                       |                             |
| 20                    | 5                           | 231 / (105)                 | 52.6 / (1335)         | 5.91<br>(150)         | 7.09<br>(180)               |
| 40                    | 10                          | 386 / (175)                 | 97.2 / (2470)         | (100)                 | (100)                       |

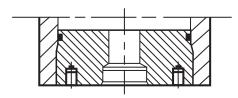
Note: Other sizes available on request. Intermediate sizes are possible, depending on the length/ diameter required. Please consult factory for details on special sizes.


Dimensions are for general information only, all critical dimensions should be verified.

Dimensions are in inches/(mm) and lbs/(kg)


# Piston Accumulators HYDAC

# **SK 600** Type 2 Dimensions


# Gas Valve Version 4 (code designation VE) Uses Charging Unit FPS



Gas Valve Version 1 (code designation VA)
Uses Charging Unit FPK



Flange Connection (code designation F\_\_) (specified by model code)



**Threaded Connection** (code designation A\_\_) (specified by model code)

# 5000 psi maximum working pressure

| <b>Size</b><br>liters | Effective<br>Gas Vol gal | Weight        | A              | ø D1  | ø D2  |
|-----------------------|--------------------------|---------------|----------------|-------|-------|
| 10                    | 2.5                      | 302 / (137)   | 28 / (711)     |       |       |
| 16                    | 4                        | 402 / (182)   | 37.2 / (945)   |       |       |
| 20                    | 5                        | 447 / (203)   | 43.4 / (1102)  | 7.09  | 9.61  |
| 30                    | 7.5                      | 606 / (275)   | 58.9 / (1496)  | (180) | (244) |
| 40                    | 10                       | 736 / (334)   | 74.4 / (1890)  |       |       |
| 50                    | 12.5                     | 884 / (401)   | 89.9 / (2283)  |       |       |
| 40                    | 10                       | 1110 / (503)  | 49 / (1245)    |       |       |
| 50                    | 12.5                     | 1254 / (569)  | 57.1 / (1450)  |       |       |
| 60                    | 15                       | 1396 / (633)  | 65 / (1651)    |       |       |
| 75                    | 20                       | 1611 / (731)  | 77.1 / (1958)  |       |       |
| 100                   | 25                       | 1969 / (893)  | 97.1 / (2466)  | 9.84  | 13.31 |
| 115                   | 30                       | 2184 / (990)  | 109.2 / (2774) | (250) | (338) |
| 135                   | 35                       | 2472 / (1121) | 125.3 / (3183) |       |       |
| 150                   | 40                       | 2689 / (1220) | 137.4 / (3490) |       |       |
| 170                   | 45                       | 2977 / (1350) | 153.5 / (3899) |       |       |
| 190                   | 50                       | 3265 / (1481) | 169.5 / (4305) |       |       |

Dimensions are for general information only, all critical dimensions should be verified. Dimensions are in inches/(mm) and lbs/(kg)  $\,$ 

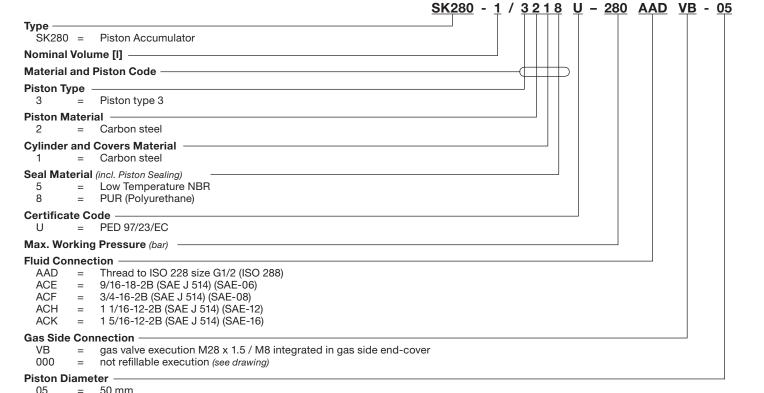
# **HYDAC** Piston Accumulators

# SK 280 Series

# **Piston Accumulators**



# **Advantages**

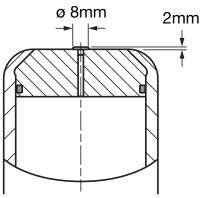

The new piston accumulator series: SK280 is non repairable. The special production process of these HYDAC accumulators saves costs. Therefore it is possible to offer better sales prices.

- · cost-effective because of an optimized production process
- weight reduced series
- reduced installation space
- Standard-gas valve with integrated M28x1.5 male thread (non refillable version possible)
- · Quick delivery for models with standard connection
- Fully tested (function test and fatigue test)
- SAE fluid ports are available

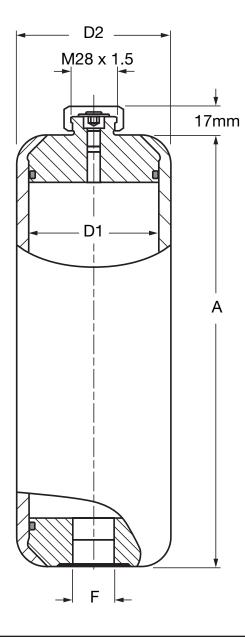
# **Application**

- Mobile Hydraulic
- Industrial Hydraulic

### **Model Code**




Model Codes containing RED selections are non-standard items – Contact HYDAC for information and availability


Not all combinations are available – See page 18

# Piston Accumulators HYDAC

# Dimensions 000 Connection

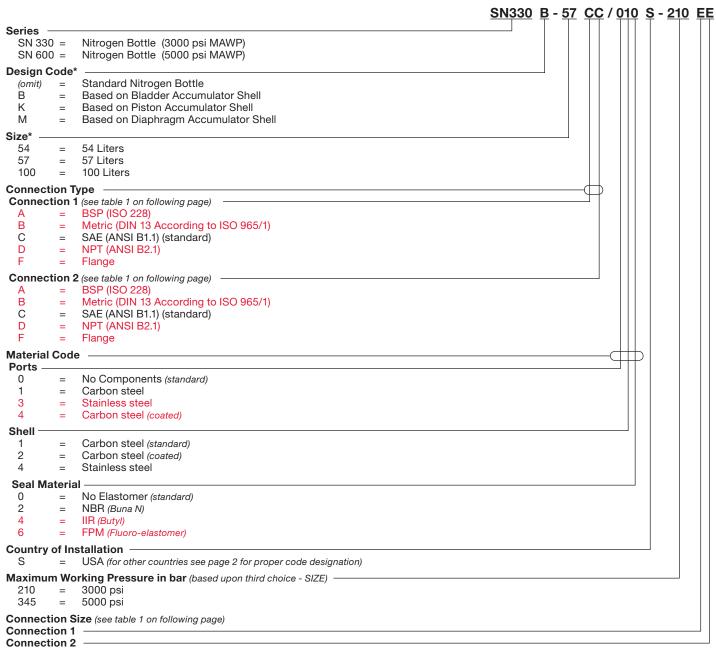


**VB Connection - Refillable** 



|                              |         | i            | i              |        | i     |     |
|------------------------------|---------|--------------|----------------|--------|-------|-----|
| Nominal<br>Volume<br>(Liter) | A +/- 3 | F<br>ISO 228 | F<br>SAE Ports | Weight | D1    | D2  |
| 0.16                         | 160     | G 1/2        | 9/16-18-2B     | 2      |       |     |
| 0.32                         | 240     | G 1/2        | 9/16-18-2B     | 2.5    |       |     |
| 0.5                          | 335     | G 1/2        | 3/4-16-2B      | 3.1    | 50    | 60  |
| 0.75                         | 460     | G 1/2        | 3/4-16-2B      | 4      |       |     |
| 1                            | 590     | G 1/2        | 3/4-16-2B      | 4.8    |       |     |
| 0.32                         | 205     | G 1/2        | 3/4-16-2B      | 3      |       |     |
| 0.5                          | 265     | G 1/2        | 3/4-16-2B      | 3.5    |       |     |
| 0.75                         | 355     | G 1/2        | 3/4-16-2B      | 4.2    |       |     |
| 1                            | 445     | G 1/2        | 3/4-16-2B      | 5.1    | 60    | 70  |
| 1.5                          | 620     | G 1/2        | 3/4-16-2B      | 6.4    |       |     |
| 2                            | 800     | G 1/2        | 3/4-16-2B      | 7.8    |       |     |
| 2.5                          | 975     | G 1/2        | 3/4-16-2B      | 9.2    |       |     |
| 0.5                          | 210     | G 3/4        | 1 1/16-12-2B   | 6.5    |       |     |
| 0.75                         | 260     | G 3/4        | 1 1/16-12-2B   | 7.2    |       |     |
| 1                            | 310     | G 3/4        | 1 1/16-12-2B   | 8      |       |     |
| 1.5                          | 410     | G 3/4        | 1 1/16-12-2B   | 9.5    |       |     |
| 2                            | 510     | G 3/4        | 1 1/16-12-2B   | 11.5   | 80    | 95  |
| 2.5                          | 605     | G 3/4        | 1 1/16-12-2B   | 13     |       |     |
| 3                            | 705     | G 3/4        | 1 1/16-12-2B   | 14.5   |       |     |
| 3.5                          | 805     | G 3/4        | 1 1/16-12-2B   | 16     |       |     |
| 4                            | 905     | G 3/4        | 1 1/16-12-2B   | 17.5   |       |     |
| 0.75                         | 235     | G 1          | 1 5/16-12-2B   | 14     |       |     |
| 1                            | 265     | G 1          | 1 5/16-12-2B   | 15     |       |     |
| 1.5                          | 330     | G 1          | 1 5/16-12-2B   | 17     |       |     |
| 2                            | 395     | G 1          | 1 5/16-12-2B   | 19     | 100   | 125 |
| 3                            | 520     | G 1          | 1 5/16-12-2B   | 23.5   | ] 100 | 125 |
| 4                            | 650     | G 1          | 1 5/16-12-2B   | 28     |       |     |
| 5                            | 775     | G 1          | 1 5/16-12-2B   | 32.5   |       |     |
| 6                            | 900     | G 1          | 1 5/16-12-2B   | 37     |       |     |

Dimensions are for general information only, all critical dimensions should be verified. Dimensions are in mm and  $\mbox{kg}$ 

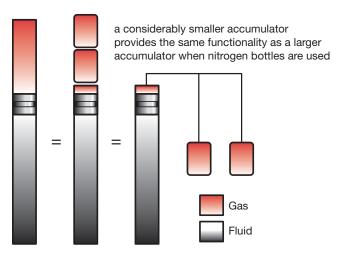

# HYDAC Nitrogen Bottles

# **SN Series**

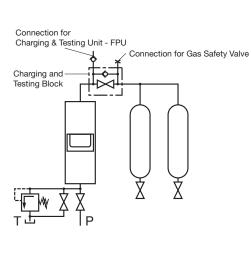
# **Description**

Nitrogen Bottles are commonly used to increase the effective gas volume while keeping the size and cost of the piston accumulator at a minimum.

# **Model Code**




Model Codes containing RED selections are non-standard items – Contact HYDAC for information and availability


Not all combinations are available

<sup>\*</sup> Size offering listed is for standard nitrogen bottles. For Design Codes other than standard nitrogen bottles, refer to the model code of the accumulator type for sizes available.

# Nitrogen Bottles HYDAC







ØD-

# **Dimensions**

| Size (MAWP)    | Connections<br>(1 and 2) | Vol.<br>(gallons) | Weight<br>(lbs) | A<br>(inches) | D<br>(inches) | Part<br>Number |
|----------------|--------------------------|-------------------|-----------------|---------------|---------------|----------------|
| 54 (5000 psi)  | 1 5/16-12UN              | 15                | 353             | 72"           | 9"            | 02050050       |
| 57 (3000 psi)  | 1 5/16-12UN              | 15                | 247             | 72"           | 9"            | 02108665       |
| 75 (3000 psi)  | 1 5/16-12UN              | 20                | 317             | 80.7          | 9"            | C/F            |
| 100 (3000 psi) | 1 5/16-12UN              | 25                | 386             | 89.4"         | 10.5"         | 02050054       |

### **Connections**

| Size | A BSP<br>(ISO228) | B<br>Metric<br>(DIN 13 Acc.ISO 965/1) | C<br>(ANSI B1.1) | D<br>NPT<br>(ANSI B2.1) | F<br>SAE Flange         |
|------|-------------------|---------------------------------------|------------------|-------------------------|-------------------------|
| Α    | G 1/4"            | M 12 x 1.5                            | 7/16"-20 UNF     | 1/4"                    | 1/2" 3000 psi Code 61   |
| В    | G 3/8"            | M 18 x 1.5                            | 9/16"-18UNF      | 3/8"                    | 3/4"-3000 psi Code 61   |
| С    | G 1/2"            | M 22 x 0.5                            | 3/4"-16UNF       | 1/2"                    | 1" 3000 psi Code 61     |
| D    | G 3/4"            | M 27 x 2                              | 1 1/16"-12UN     | 3/4"                    | 1 1/4" 3000 psi Code 61 |
| Е    | G 1"              | M 33 x 2                              | 1 5/16"-12UN     | 1"                      | 1 1/2" 3000 psi Code 61 |
| F    | G 1 1/4"          | M 42 x 2                              | 1 5/8"-12UN      | 1 1/4"                  | 2" 3000 psi Code 61     |
| G    | G 1 1/2"          | M 48 x 2                              | 1 7/8"-12UN      | 1 1/2"                  | 1/2" 6000 psi Code 62   |
| Н    | G 2"              | M 14 x 1.5                            | 2 1/2"-12UN      | 2"                      | 3/4" 6000 psi Code 62   |
| - 1  | G 1 3/4"          | M 8                                   | _                | _                       | 1" 6000 psi Code 62     |
| J    | _                 | _                                     | _                | _                       | 1 1/4" 6000 psi Code 62 |
| K    | _                 | _                                     | 7/8"-14UNF       | 5/8"                    | 1 1/2" 6000 psi Code 62 |
| L    | _                 | _                                     | _                | _                       | 2" 6000 psi Code 62     |

Items in RED are using the basic design with an adapter.

Connection 1

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.

# **HYDAC** Pulsation Dampeners

# **SB and SBO Series**Pulsation Dampeners



### **Description**

The pressure fluctuations occurring in hydraulic systems can be periodic or single occurrence problems due to:

- Flow rate fluctuations from displacement pumps
- Actuation of shut-off and control valves with short opening and closing times
- Switching pumps on and off
- Sudden linking of hydraulic circuits with different pressure levels

Dampeners have two fluid connections for inline mounting. The volume of flow is directed straight at the bladder or diaphragm by diverting it in the fluid valve. This causes direct contact of the fluid flow with the bladder or diaphragm which, in an almost inertialess operation, balances the flow rate fluctuations via the gas volume. It is particularly effective with higher frequency oscillations. The gas pre-charge pressure is adjusted for the specific systems operating conditions.

#### **Construction**

HYDAC pulsation dampeners consist of:

- The welded or forged pressure vessel in carbon steel; for chemically aggressive fluids they are available in coated carbon steel or stainless steel
- The special fluid valve with inline connection, which guides the flow into the vessels (threaded or flange connections available)
- The bladder or diaphragm in various compounds as listed below

# **Compound Materials**

Not all fluids are compatible with every elastomer at all temperatures. Therefore, HYDAC offers the following choice of elastomers:

- NBR (Standard Nitrile)
- LT-NBR (Low Temperature Nitrile)
- ECO (Epichlorohydrin)
- IIR (Butyl)
- FPM (Fluorelastomer)
- others (available upon request)

To determine which material is appropriate...

ALWAYS REFER TO FLUID
MANUFACTURER'S RECOMMENDATION

### **Corrosion Protection**

For use with certain aggressive or corrosive fluids, or in a corrosive environment, HYDAC offers protective coatings and corrosive resistant materials (i.e. stainless steel) for the accumulator parts that come in contact with the fluid, or are exposed to the hostile environment.

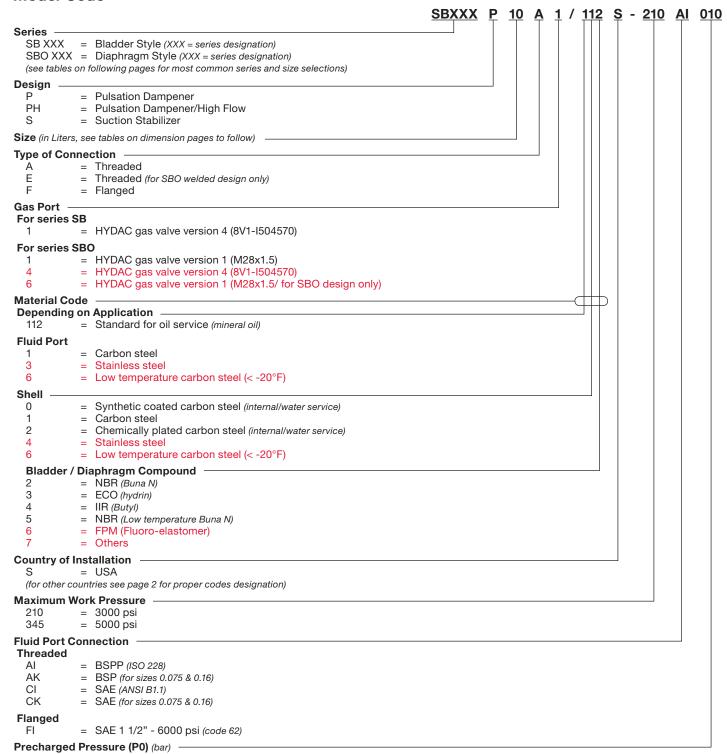
# **Mounting Position**

The mounting position of hydraulic dampeners is dependent on the dampener chosen and the specific application. The preferred position is typically vertical.

# System Mounting

Dampeners should be mounted as close as possible to the pulsation source.

# **Applications**


Pulsation dampeners are used to:

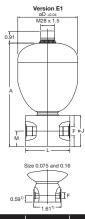
- Reduce vibrations caused by pipes, valves, couplings, etc. in order to prevent pipe and valve damage
- Protect measurement instruments and eliminate the impaired performance caused by pulsations
- · Reduce system noise
- Increase machine performance
- Allow the connection of multiple pumps to one line
- Increase the allowable rpm and feed pressure of pumps
- Reduce system breakdowns and increase the service life of the system

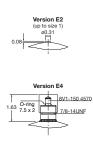
See illustration on page 29 for a graphic representation of a pressure spike with and without an accumulator being used as a shock absorber.

# Pulsation Dampeners HYDAC

#### **Model Code**



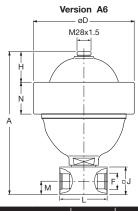

Model Codes containing RED selections are non-standard items – Contact HYDAC for information and availability


Not all combinations are available

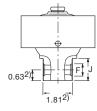
# **HYDAC** Pulsation Dampeners

# SBO Welded Diaphragm Series

**Dimensions** 







| Series  | Series Size Vo |       | Max. working pressure |     | Weight | A    | øD <sup>(3</sup> | Thread F     |              | J    | L    | M    | Q <sup>(2</sup> |
|---------|----------------|-------|-----------------------|-----|--------|------|------------------|--------------|--------------|------|------|------|-----------------|
|         |                | (in³) | psi                   | bar | (lbs)  | (in) | (in)             | SAE          | BSP          | (in) | (in) | (in) | (gpm)           |
| SBO250P | 0.075          | 5     | 3600                  | 250 | 2.2    | 4.57 | 2.52             | 9/16-18UNF   | ISO 228-G1/4 | -    | -    | -    | 5               |
| SBO210P | 0.16           | 10    | 3000                  | 210 | 2.5    | 5.04 | 2.91             | 9/16-18UNF   | ISO 228-G1/4 | -    | -    | -    | 5               |
| SBO210P | 0.32           | 20    | 3000                  | 210 | 5.8    | 5.96 | 3.66             | 3/4-16UNF    | ISO 228-G1/2 | 1.97 | 3.15 | 0.99 | 10              |
| SBO210P | 0.5            | 30    | 3000                  | 210 | 8.7    | 6.51 | 4.13             | 3/4-16UNF    | ISO 228-G1/2 | 1.97 | 3.15 | 0.99 | 10              |
| SBO330P | 0.6            | 36    | 4700                  | 330 | 12.3   | 7.74 | 4.53             | 1 5/16-12UNF | ISO228-G 1   | 2.36 | 4.13 | 1.18 | 40              |
| SBO210P | 0.75           | 45    | 3000                  | 210 | 11.2   | 7.58 | 4.76             | 1 5/16-12UNF | ISO228-G 1   | 2.36 | 4.13 | 1.18 | 40              |
| SBO200P | 1              | 60    | 3000                  | 210 | 12.9   | 8.02 | 5.35             | 1 5/16-12UNF | ISO228-G 1   | 2.36 | 4.13 | 1.18 | 40              |
| SBO210P | 2              | 120   | 3000                  | 210 | 19.6   | 9.47 | 6.57             | 1 5/16-12UNF | ISO228-G 1   | 2.36 | 4.13 | 1.18 | 40              |

# SBO Threaded Diaphragm Series

**Dimensions** 





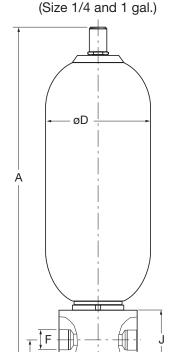


| Series                | Size | Gas<br>Vol-  | Max. working pressure |     | Weight | A     | øD   | Thre         | ad F         | н    | J    | L    | М    | N    | <b>Q</b> (2 |
|-----------------------|------|--------------|-----------------------|-----|--------|-------|------|--------------|--------------|------|------|------|------|------|-------------|
| Ceries                | Oize | ume<br>(in³) | psi                   | bar | (lbs)  | (in)  | (in) | SAE          | BSP          | (in) | (in) | (in) | (in) | (in) | (gpm)       |
| SBO350P4)             | 0.25 | 15           | 5000                  | 350 | 11.5   | 6.30  | 4.53 | 3/4-16UNF    | ISO 228-G1/2 | 0.70 | 1.97 | 3.15 | 0.99 | 2.17 | 10          |
| SBO500P               | 0.25 | 15           | 7200                  | 500 | 11.5   | 6.30  | 4.53 | 3/4-16UNF    | ISO 228-G1/2 | 0.70 | 1.97 | 3.15 | 0.99 | 2.17 | 10          |
| SBO600P <sup>4)</sup> | 0.25 | 15           | 8700                  | 600 | 22.7   | 6.77  | 6.02 | 3/4-16UNF    | ISO 228-G1/2 | 0.60 | 2.17 | 2.16 | 0.71 | 2.48 | 10          |
| SBO750P               | 0.25 | 15           | 10000                 | 750 | 22.7   | 6.77  | 6.02 | 3/4-16UNF    | ISO 228-G1/2 | 0.60 | 2.17 | 2.16 | 0.71 | 2.48 | 10          |
| SBO250P4)             | 0.6  | 36           | 3600                  | 250 | 17.6   | 8.31  | 5.51 | 1 5/16-12UNF | ISO228-G 1   | 1.77 | 2.36 | 4.13 | 1.18 | 2.24 | 40          |
| SBO330P               | 0.6  | 36           | 4700                  | 330 | 17.6   | 8.31  | 5.51 | 1 5/16-12UNF | ISO228-G 1   | 1.77 | 2.36 | 4.13 | 1.18 | 2.24 | 40          |
| SBO210P               | 1.3  | 80           | 3000                  | 210 | 23.7   | 10.26 | 6.69 | 1 5/16-12UNF | ISO228-G 1   | 2.45 | 2.36 | 4.13 | 1.18 | 2.17 | 40          |
| SBO400P               | 1.3  | 80           | 5800                  | 400 | 29.7   | 10.47 | 7.83 | 1 5/16-12UNF | ISO228-G 1   | 1.97 | 2.36 | 4.13 | 1.18 | 2.56 | 40          |
| SBO180P4)             | 2    | 120          | 2600                  | 180 | 30.1   | 11.52 | 7.83 | 1 5/16-12UNF | ISO228-G 1   | 2.54 | 2.36 | 4.13 | 1.18 | 2.40 | 40          |
| SBO250P               | 2    | 120          | 3600                  | 250 | 34.0   | 11.75 | 6.60 | 1 5/16-12UNF | ISO228-G 1   | 2.54 | 2.36 | 4.13 | 1.18 | 2.52 | 40          |

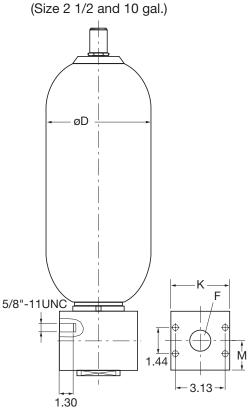
<sup>1)</sup> For SAE threads only

Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.

<sup>2)</sup> Pressure loss at Q (viscosity 32 cSt) approx. 50 psi


<sup>3)</sup> Diameter at electron-beam weld may be up to +0.150" larger

<sup>4)</sup> Only available in stainless steel


# Pulsation Dampeners HYDAC

# SB Bladder Accumulator Series Dimensions

# Threaded connection



Flanged connection

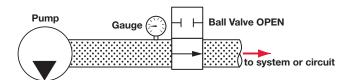


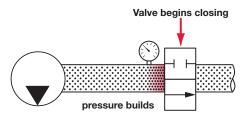
SB 330 P (3000 psi max. working pressure)

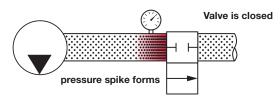
| Size | Vol.<br>(gal) | Gas Vol-<br>ume<br>(in³) | Weight<br>(lbs) | A<br>(in) | øD<br>(in) | Connection<br>F                        | J<br>(in) | K<br>(in) | L<br>(in) | M<br>(in) | Q <sup>(1</sup><br>(gpm) |
|------|---------------|--------------------------|-----------------|-----------|------------|----------------------------------------|-----------|-----------|-----------|-----------|--------------------------|
| 1    | 1/4           | 66                       | 24              | 14.4      | 4.6        | ISO 228-G1 1/4                         | 3.15      | 3.15      | 4.72      | 2.24      | 80                       |
| 4    | 1             | 226                      | 40              | 18.0      | 6.6        | ISO 228-G1 1/4                         | 3.15      | 3.15      | 4.72      | 2.24      | 80                       |
| 10   | 2 1/2         | 566                      | 90              | 24.4      | 9.0        | SAE 1 1/2" - 6000<br>psi (code 62 SAE) | 3.94      | 4.50      | 6.69      | 3.35      | 140                      |
| 20   | 5             | 1125                     | 154             | 36.3      | 9.0        | SAE 1 1/2" - 6000<br>psi (code 62 SAE) | 3.94      | 4.50      | 6.69      | 3.35      | 140                      |
| 32   | 10            | 2080                     | 220             | 56.9      | 9.0        | SAE 1 1/2" - 6000<br>psi (code 62 SAE) | 3.94      | 4.50      | 6.69      | 3.35      | 140                      |

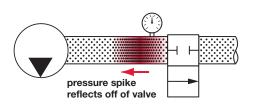
# **SB 600 P** (5000 psi max. working pressure)

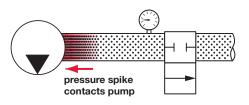
| Size | Vol.<br>(gal) | Gas Volume<br>(in³) | Weight<br>(lbs) | A<br>(in) | øD<br>(in) | Connection<br>F                        | J<br>(in) | K<br>(in) | L<br>(in) | M<br>(in) | Q <sup>(1</sup><br>(gpm) |
|------|---------------|---------------------|-----------------|-----------|------------|----------------------------------------|-----------|-----------|-----------|-----------|--------------------------|
| 1    | 1/4           | 66                  | 24              | 14.4      | 4.6        | ISO 228-G1 1/4                         | 3.15      | 3.15      | 4.72      | 2.24      | 80                       |
| 4    | 1             | 226                 | 49              | 18.0      | 6.6        | ISO 228-G1 1/4                         | 3.15      | 3.15      | 4.72      | 2.24      | 80                       |
| 10   | 2 1/2         | 566                 | 102             | 24.4      | 9.1        | SAE 1 1/2" - 6000<br>psi (code 62 SAE) | 3.94      | 4.50      | 6.69      | 3.35      | 140                      |
| 20   | 5             | 1125                | 183             | 36.3      | 9.1        | SAE 1 1/2" - 6000<br>psi (code 62 SAE) | 3.94      | 4.50      | 6.69      | 3.35      | 140                      |
| 32   | 10            | 2080                | 269             | 56.9      | 9.1        | SAE 1 1/2" - 6000<br>psi (code 62 SAE) | 3.94      | 4.50      | 6.69      | 3.35      | 140                      |

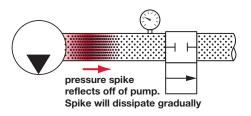

<sup>1)</sup> Pressure loss at Q (viscosity 32 cSt) approx. 50 psi


Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.

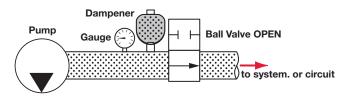

# HYDAC Shock Absorbers

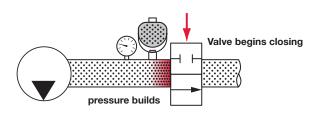

# Graphic Example of a Pressure Spike

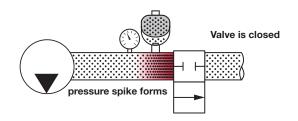

### Without Accumulator

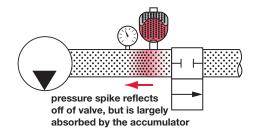


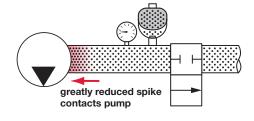


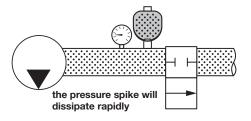





### With Accumulator














For assistance in sizing pulsation dampeners, shock absorbers, and suction stabilizers, please contact the HYDAC Accumulator Group.

# Thermal Fuse Caps HYDAC

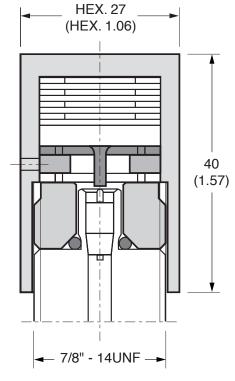
# Thermal Fuse Caps



# **Description**

HYDAC Thermal Fuse Caps are safety devices that automatically bleed accumulator gas pressure in the event of a fire. These devices are installed on the HYDAC version 4 gas valve. When the critical temperature (320°F to 340°F) is reached, a support ring melts, allowing for the spring to depress the gas valve core.

# **Applications**


HYDAC Thermal Fuse Caps can be applied as a safety measure on any HYDAC accumulator with a Version 4 Gas Valve. Application of these devices may result in a reduction in insurance premium (check with provider).

#### Installation

Simply remove and discard the standard Gas Valve Protection Cap and Valve Seal Cap. Screw on the Thermal Fuse Cap and torque to 30 N-m (22 lb-ft.)

# **Operation**

Once installed, the thermal fuse cap requires no attention. In the event of a fire, the support ring will melt and the spring will expand, causing the pin to depress the gas valve core. The melted support and gas will then exit through the gas bleed ports in the side of the thermal fuse cap.



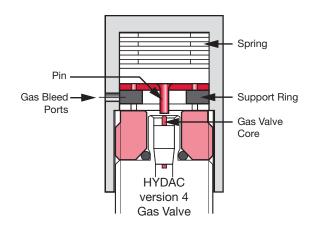
#### Model Code

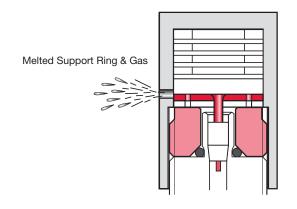
There are no options for this product, therefore a model code is not given.

Order Part No. 00363501

#### Technical Data

**Maximum Working Pressure** 


• 5000 psi (345 bar)


#### **Maximum Working Temperature**

• 200°F (93.5°C)

#### **Fusing Temperature**

• 320 to 340°F (160 to 171°C)



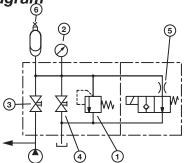


# YDAC Safety & Shut-off Blocks

# **SAF Series** Safety & Shut-off Blocks



# Description


HYDAC safety and shut-off blocks are designed to protect, shut-off, and discharge hydraulic accumulators or user units. The compact design simplifies the hydraulic system connection and offers the following advantages:

- minimum space compared to individual components
- reduced installation time
- various system connections
- system lockout

# Safety & Shut-off Block Features

- 1 pressure relief valve
- 2 pressure gauge (optional)
- 3 main shut-off valve
- 4 manual bleed valve
- 5 2-way solenoid operated bleed valve (optional)
- 6 accumulator

Circuit Diagram



Note: When using hydro-pneumatic accumulators for stored hazardous energy, HYDAC recommends the use of its Safety and Shut-off Block (SAF) with solenoid operated bleed valve

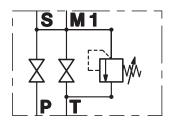
# **Technical Specifications**

#### Fluids

Mineral oil, hydraulic oil, water glycol, non-flammable fluids (other fluids upon request)

Temperature (for carbon steel) 5° to 180°F (-15° to 80°C)

**Maximum Working Pressure** up to 5800 psi (400 bar)


#### Construction

The Safety and Shut-off Block consists of a valve block, a built-in pressure relief valve, a main shut-off valve, and a manually operated bleed valve. In addition, an optional solenoid operated bleed valve allows automatic release of the accumulator or user unit and therefore of the hydraulic system in an emergency or during shutdown. The necessary return line connection is provided in addition to the gauge connection.

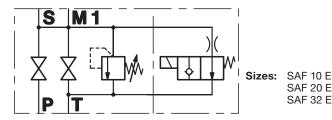
### Standard Models

#### Model with manually operated bleed valve

The basic model type "M" contains a manually operated bleed valve for manual pressure release of the accumulator.



Sizes: SAF 10 M SAF 20 M


**SAF 32 M** 

SAF 20 E

**SAF 32 E** 

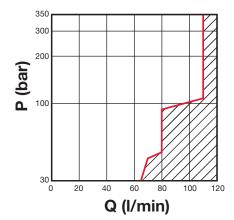
#### Model with solenoid operated bleed valve

In addition to the features of the type "M" block, the type "E" model also contains a solenoid operated bleed valve for automatic pressure release of the accumulator.



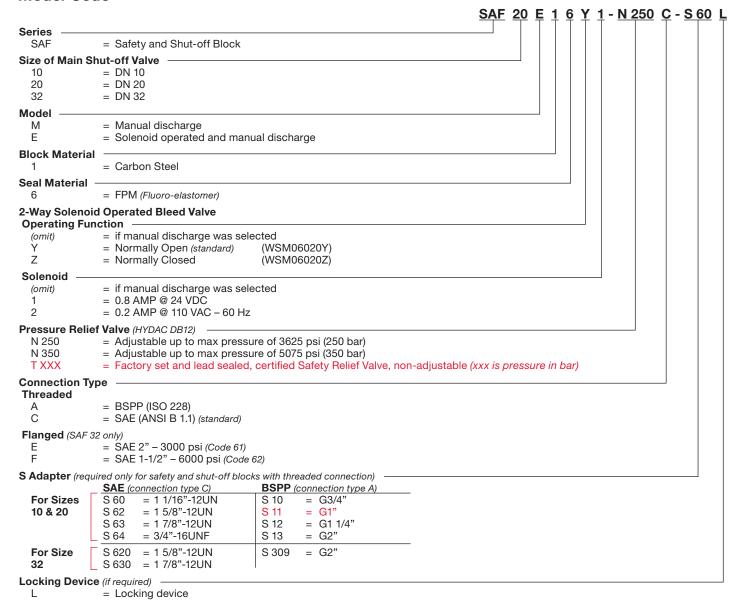
#### **Connections**

S - Accumulator Connection


P - System Connection

T - Tank Connection

M1 - Gauge Connection


# Pressure Relief Valve (DB12)

This valve cannot be set to values in the shaded area

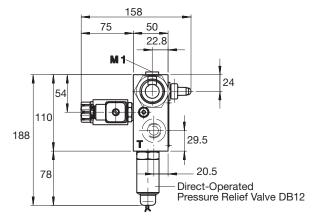


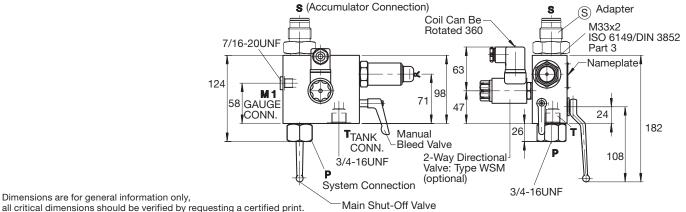
# Safety & Shut-off Blocks HYDAC

### **Model Code**



Model Codes containing RED selections are non-standard items – Contact HYDAC for information and availability


Not all combinations are available


# HYDAC Safety & Shut-off Blocks

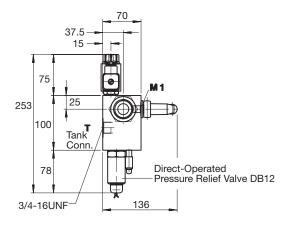
# **Dimensions** SAF 10 M/E...C

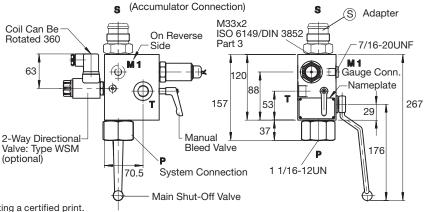
| Time     | Approximate Weight |        |  |  |  |  |
|----------|--------------------|--------|--|--|--|--|
| Туре     | kg                 | (lbs.) |  |  |  |  |
| SAF 10 M | 4.2                | (9.3)  |  |  |  |  |
| SAF 10 E | 4.6                | (10.1) |  |  |  |  |

Dimensions in millimeters. Note: for "M" Type block the 2-way directional valve is replaced with a plug






# SAF 20 M/E...C


| Tuno     | Approximate Weight |        |  |  |  |
|----------|--------------------|--------|--|--|--|
| Туре     | kg                 | (lbs.) |  |  |  |
| SAF 20 M | 6.8                | (15.0) |  |  |  |
| SAF 20 E | 7.2                | (15.8) |  |  |  |

Dimensions are for general information only,

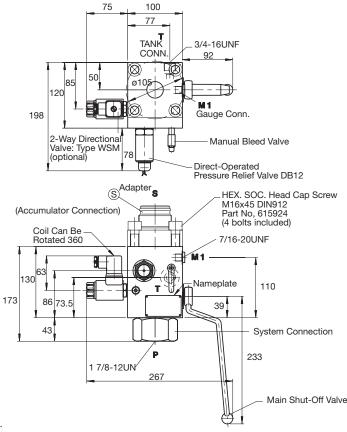
Dimensions in millimeters.

Note: for "M" Type block the 2-way directional valve is replaced with a plug





Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.


# Safety & Shut-off Blocks HYDAC

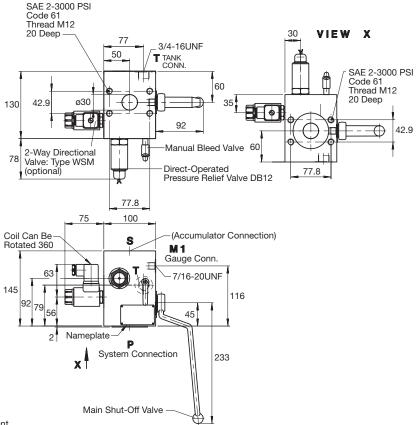
# SAF 32 M/E...C

| Type     | Approximate Weight |        |  |  |
|----------|--------------------|--------|--|--|
| Туре     | kg                 | (lbs.) |  |  |
| SAF 32 M | 12.0               | (26.4) |  |  |
| SAF 32 E | 12.4               | (27.2) |  |  |

Dimensions in millimeters.

Note: for "M" Type block the 2-way directional valve is replaced with a plug




Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.

# SAF 32 M/E...E

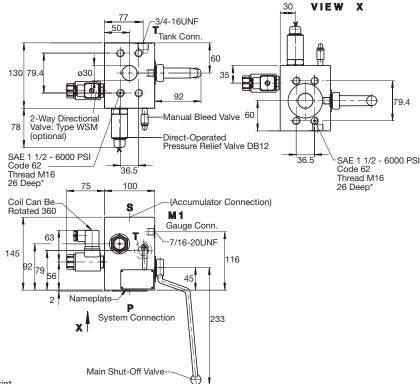
| Time     | Approximate Weight |        |  |  |
|----------|--------------------|--------|--|--|
| Туре     | kg                 | (lbs.) |  |  |
| SAF 32 M | 15.0               | (33.1) |  |  |
| SAF 32 E | 15.4               | (33.9) |  |  |

\*Hexagonal socket head cap screws M 16x55-DIN 912 (HYDAC Part No. 00601496) have to be ordered separately

Dimensions in millimeters Note: for "M" Type block the 2-way directional valve is replaced with a plug

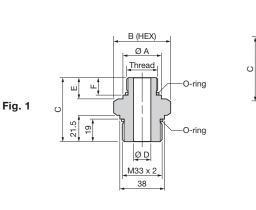


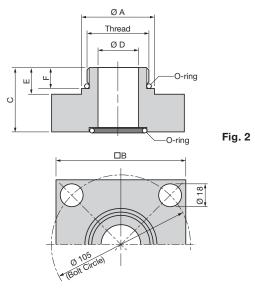
Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.


# HYDAC Safety & Shut-off Blocks

# Dimensions SAF 32 M/E...F

| Time     | Approximate Weight |        |  |  |
|----------|--------------------|--------|--|--|
| Туре     | kg                 | (lbs.) |  |  |
| SAF 32 M | 15.0               | (33.1) |  |  |
| SAF 32 E | 15.4               | (33.9) |  |  |


\*Hexagonal socket head cap screws M 16x55-DIN 912 (HYDAC Part No. 00601496) have to be ordered separately

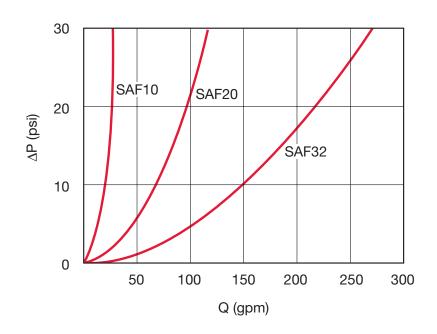

Dimensions in millimeters Note: for "M" Type block the 2-way directional valve is replaced with a plug



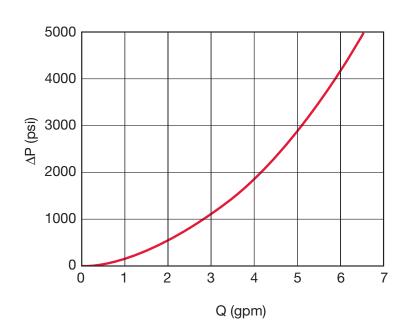
Dimensions are for general information only, all critical dimensions should be verified by requesting a certified print.

# S Adapters






| Type SAF     | Accumulator Type                      | Adapter | Fig. | Thread       | Α  | В   | С  | D  | E  | F  |
|--------------|---------------------------------------|---------|------|--------------|----|-----|----|----|----|----|
|              | SB330-Size 1 / SBO-Size 2 to 3.5      | S 60    | 1    | 1 1/16-12 UN | 32 | 41  | 55 | 14 | 19 | 15 |
| SAF to 10/20 | SB330-Size 4 to 6 / SB600-Size 1 to 4 | S 62    | 1    | 1 5/8-12 UN  | 48 | 66  | 57 | 23 | 19 | 15 |
|              | SB330/600-Size 10 to 54               | S 63    | 1    | 1 7/8-12 UN  | 54 | 66  | 57 | 23 | 19 | 15 |
|              | SBO-Size 0.32 to 1.4                  | S 64    | 1    | 3/4-16 UNF   | 23 | 41  | 51 | 10 | 15 | 11 |
| SAF 32       | SB330-Size 4 to 6 / SB600-Size 1 to 4 | S 620   | 2    | 1 5/8-12 UN  | 48 | 100 | 49 | 22 | 19 | 15 |
|              | SB330/600-Size 10 to 54               | S 630   | 2    | 1 7/8-12 UN  | 54 | 100 | 49 | 30 | 19 | 15 |


Dimensions In millimeters
Dimensions are for general information only,
all critical dimensions should be verified by requesting a certified print.

# Safety & Shut-off Blocks HYDAC

Pressure Drops
Through Main Shut-off valve



# Through Solenoid Valve



# **HYDAC** Charging & Gauging Units

# FPK & FPS Series Charging & Gauging Units



# **Description**

To maintain system performance HYDAC recommends that the gas precharge pressure is checked regularly. A loss in the gas precharge pressure will cause a drop in the system efficiency and could cause damage to the bladder, diaphragm, or piston accumulator.

HYDAC charging and gauging units allow hydro-pneumatic accumulators to be precharged with dry nitrogen. For these purposes, a charging and gauging unit is connected to a commercially available nitrogen bottle via a flexible charging hose.

These units also allow maintenance personnel to check the current gas precharge pressure of an accumulator. For critical systems, consider the use of a permanent gauging block (see page 43) which will allow constant monitoring.

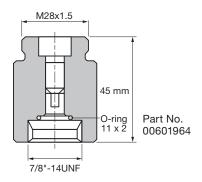
All HYDAC charging and gauging units incorporate a gauge and check valve in the charging connection, and a manual bleed valve with a T-handle.

HYDAC offers two types of charging and gauging units:

## Model FPS

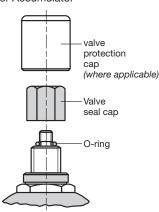
For use with gas valve version 4. (except on top repairable bladder accumulators)



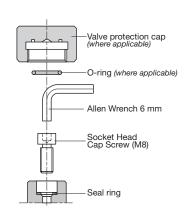

# Model FPK

For use with gas valve version 1.



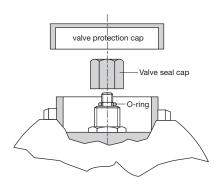

# Adapter A3 (FPK/SB)

An adapter that must be used with the FPK model in order to fit HYDAC gas valve version 4, including top repairable bladder accumulators.



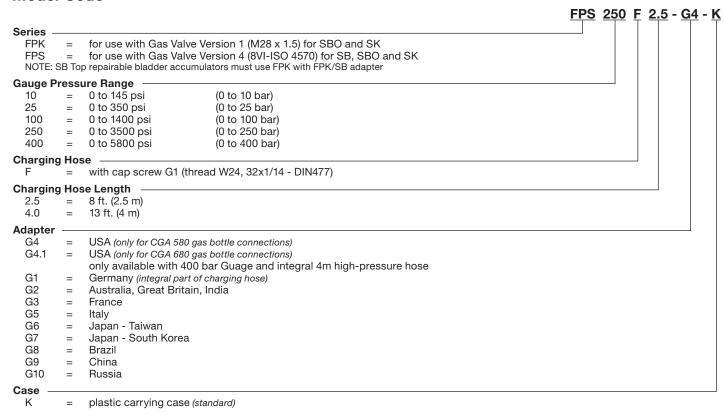

## Gas Valve Version 4

on a Bottom Repairable Bladder Accumulator




### Gas Valve Version1




# Gas Valve Version 4

on a Top Repairable Bladder Accumulator



# Charging & Gauging Units HYDAC

## **Model Code**

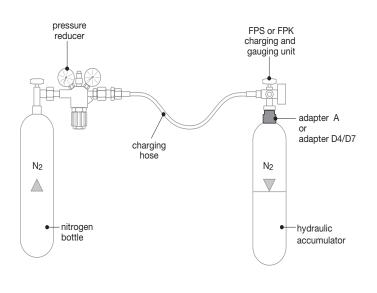


### **Additional Accessories:**

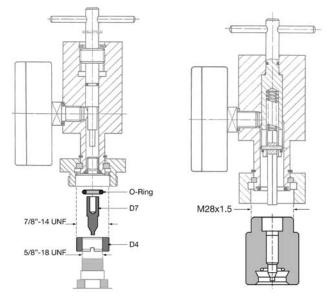
ADAPTER A3 (FPK/SB) = adapter for using FPK Charging Unit with top repairable bladder accumulators NOTE: for other adapters please consult factory.

6mm Allen Wrench (for HYDAC Gas Valve Version 1)

14mm Open End Wrench (for HYDAC gauge)

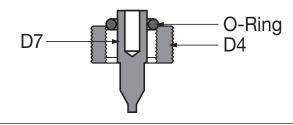

Operating and Installation Instructions are included with each charging kit. This is also available for download in PDF format on our web site: **www.hydacusa.com** For spare parts see page 65.

Note: For Oil, Gas & Marine specific charging & gauging units please refer to page 48


# HYDAC Adapters

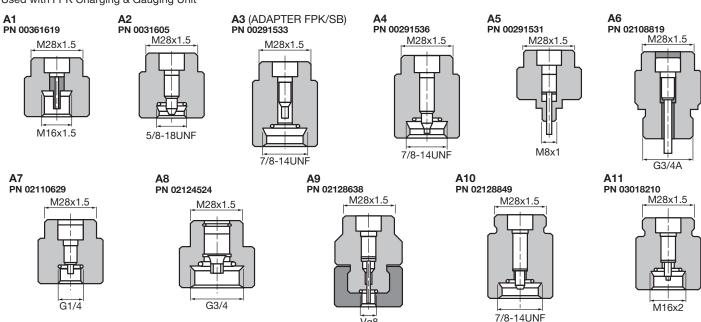
# **Charging & Gauging Adapters**

Connecting Charging & Gauging Units to 3000 psi Accumulators



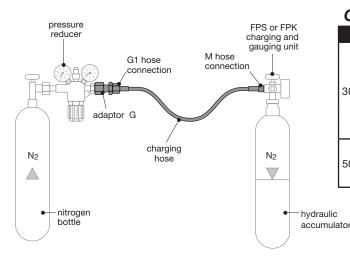

FPS Unit FPK Unit with Adapter D4/D7 with Adapter A\*




Adapter D4/D7 Part Number 02067646

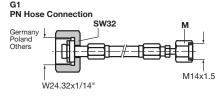
Used with FPS Charging & Gauging Unit

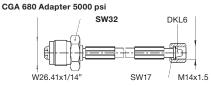



# \*A Adapters

Used with FPK Charging & Gauging Unit

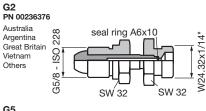


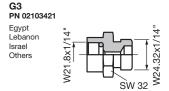


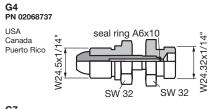


# Connecting Charging Hose to Gas Bottle

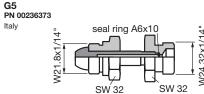


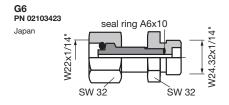
# **Charging Hoses**

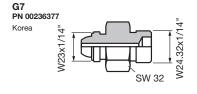

| WP       | Length  | Part No. |  |  |  |
|----------|---------|----------|--|--|--|
|          | 2.5 m   | 00236514 |  |  |  |
|          | 4.0 m   | 00236515 |  |  |  |
| 3000 psi | 10.0 m  | 00373405 |  |  |  |
|          | 15.0 m  | 02115552 |  |  |  |
|          | 20.0 m  | 02109765 |  |  |  |
|          | 28.0 m  | 02109574 |  |  |  |
|          | 2.5 m   | 3053703  |  |  |  |
| 5000 psi | 4.0 m   | 3053704  |  |  |  |
|          | 10.0 m  | 3117720  |  |  |  |
|          | 10.0111 | 0111120  |  |  |  |

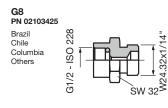


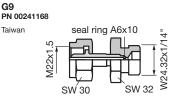





# G Adapters

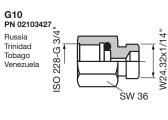

From N2 Bottle to Charging Hose

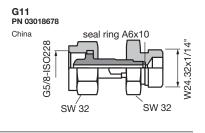


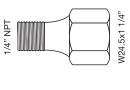


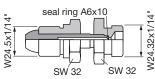





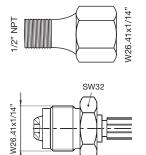


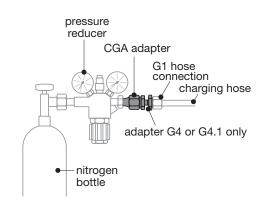


Taiwan






### CGA 580 Adapter (for USA only) PN 02701355


From G4 Adapter to Regulator






### CGA 680 Adapter (for USA only) PN 02701356

From G4.1 Adapter to Regulator





# HYDAC Permanent Gauging Blocks

# **Permanent Gauging Block**



# **Description**

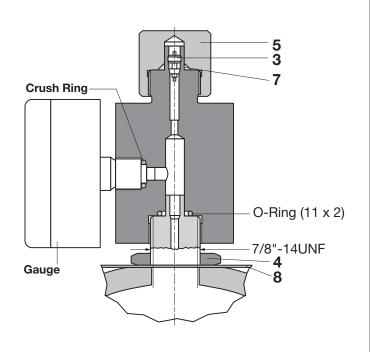
The HYDAC Permanent Gauging Block allows constant monitoring of gas pressure while a system is in operation. This helps users monitor pressure loss, and determine when charging is needed. They are designed to fit bladder, diaphragm, and piston style accumulators with HYDAC Gas Valve Version 4. Use of these blocks facilitates trouble shooting and simplifies maintenance by eliminating the need to attach a charging and gauging unit to monitor pressure.

# Special Tools Required

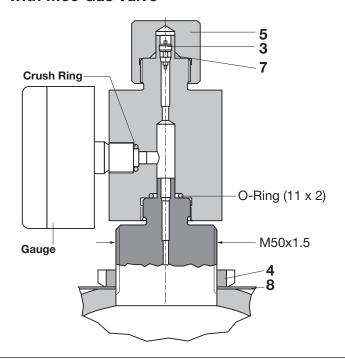
- · Charging and Gauging Unit
- · Gas Valve Core Tool
- 50 mm Open End Wrench (for bottom repairable accumulator)
- 32 mm Open End Wrench (for top repairable accumulator)
- Torque Wrench(es)

Read all instructions thoroughly before beginning any type of service or repair work.

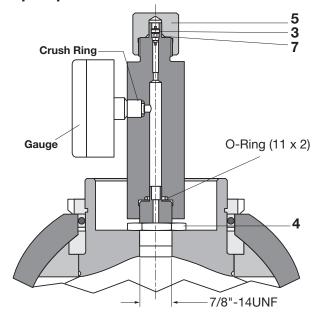
Refer to additional information contained in the "Operating and Installation Instructions for HYDAC Accumulators."


## **Model Code**

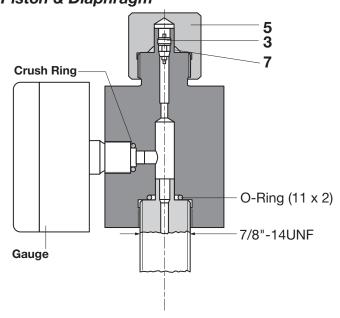
PERM GAUGING BLOCK VER4 850 Series Perm Gauging Block Gas Valve Type = HYDAC gas valve version 1 (M28x1.5) VER1 = HYDAC gas valve version 4 (7/8"-14UNF) VER4 = Bottom Repairable (standard) (omit) TR = Top Repairable **Gauge Pressure Range** 850 = 0 to 850 psi 1450 = 0 to 1450 psi


# Permanent Gauging Blocks HYDAC

Installation Drawings
Permanent Gauging Blocks for HYDAC Gas Valve Version 4


# Bottom Repairable Bladder




# Bottom Repairable Bladder with M50 Gas Valve



Top Repairable Bladder<sup>(1)</sup>



Piston & Diaphragm



Parts Legend

| 3 | Gas Valve Core   |
|---|------------------|
| 4 | Lock Nut         |
| 5 | Valve Seal Cap   |
| 7 | O-ring (7.5 x 2) |
| 8 | Name Plate       |

# HYDAC Mounting Components

of hydro-pneumatic accumulators safely and simply, regardless of the mounting position. Our wide range

includes suitable mounting components for every type of static hydro-pneumatic accumulator.

### **Function**

Mounting components are used primarily for the following:

- · to fix the accumulator into its position
- to carry the weight of the accumulator
- to counteract the forces exerted by the hydraulic lines

# **Types**

HYDAC offers three styles of clamps:

- HyRac
- · Regular Duty (HS)
- Heavy Duty (HSS)

Additionally, for larger accumulators, HYDAC offers:

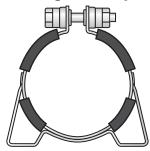
- Base Brackets (KBK & KMS)
- · Mounting Sets (SEB)

Refer to the illustrations and photos to the right.

### Construction

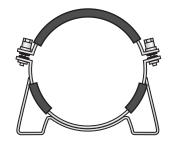
They are constructed out of zinc-plated steel with a stainless steel strap (depending on style), utilizing a rubber insert to absorb vibration.

The HyRac and regular duty have a one piece construction with center adjustment.


Conversely, the heavy duty clamps have a two piece construction. This allows for easy installation and removal while improving the strength to weight ratio.

HYDAC also offers base brackets for larger accumulators for proper support and isolation from system vibrations. The brackets incorporate a rubber support ring for this reason.

All mounting components can be easily bolted to your system.


Application guides are provided on the following pages to easily match the appropriate mounting components with HYDAC accumulators.

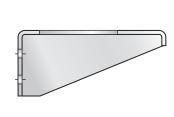
# **HS - Regular Duty Clamp**





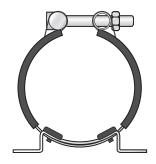
**HSS - Heavy Duty Clamp** 






KBK - Base Bracket






KMS - Base Bracket for Threaded Diaphragm





## HyRac Clamp





SEB - Complete Mounting Sets





# Mounting Components HYDAC

# **Mounting Component Selection Guide**

These are the mounting solutions that HYDAC recommends for each accumulator

# Bladder Accumulators and Nitrogen Bottles

# SB 330... & SN 330...

| Accumulator Size (capacity) | Clamp Type (quantity) | Part Number | Base Bracket Type | Part Number |
|-----------------------------|-----------------------|-------------|-------------------|-------------|
| 1 (0.25 gal)                | HyRac 110-118 ST (1)  | 03059446    | None              |             |
| 4 to 6 (1 to 1.5 gal)       | HS 167 (1)            | 02110642    | KBK 167/G         | 02107989    |
| 10 to 20 (2.5 to 5 gal)     | HSS 222/229 (1)       | 00235224    | KBK 222/G         | 02100651    |
| 32 to 54 (10 to 15 gal)     | HSS 222/229 (2)       | 00235224    | KBK 222/G         | 02100651    |

### SB 600...

| Accumulator Size (capacity) | Clamp Type (quantity) | Part Number | Base Bracket Type | Part Number |
|-----------------------------|-----------------------|-------------|-------------------|-------------|
| 1 (0.25 gal)                | HyRac 121-129 ST (1)  | 03059450    | None              |             |
| 4 to 6 (1 to 1.5 gal)       | HyRac 167-175 ST (1)  | 00444910    | KBK 167/G         | 02107989    |
| 10 to 20 (2.5 to 5 gal)     | HSS 242 (1)           | 00362712    | KBK 222/G         | 02100651    |
| 32 to 54 (10 to 15 gal)     | HSS 242 (2)           | 00362712    | KBK 222/G         | 02100651    |

# Piston Accumulators SK 350...

| Accumulator Piston Size(1 | Clamp Type (quantity) | Part Number | Base Bracket Type | Part Number |
|---------------------------|-----------------------|-------------|-------------------|-------------|
| 15 (150 mm)               | HyRac 176-185 ST      | 00445044    | KBK 219           | 00238047    |
| 18 (180 mm)               | HSS 219 (2)           | 00237401    | KBK 219           | 00238042    |
| 25 (250 mm)               | HSS 310 (2)           | 00237389    | KBK 310           | 00238043    |
| 35 (355 mm)               | consult factory       |             | consult factory   |             |

<sup>1)</sup> Example: SK350-20/2112S-210FCF-VE-18 (see page 17 for details)

# SK 280...

| Accumulator Piston Size <sup>(1)</sup> | Clamp Type (quantity)         | Part Number |
|----------------------------------------|-------------------------------|-------------|
| 05 (50 mm)                             | HRGKSM 0 R 58-61/62 ST (2)    | 03018442    |
| 06 (60 mm)                             | HRGKSM 0 R 70-73/73 ST (2)    | 03018444    |
| 08 (80 mm)                             | HRGKSM 0 R 92-95/96 ST (2)    | 00444995    |
| 10 (100 mm)                            | HRGKSM 0 R 119-127/124 ST (2) | 00444505    |

<sup>1)</sup> Example: SK280-1/3218U-280 AAD VB **05** (see page 21 for details)

# Diaphragm Accumulators

SBO...E... (Welded type)

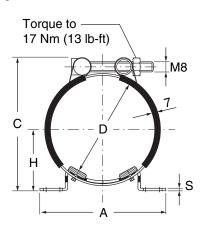
| Accumulator Type | Clamp Type <sup>(2</sup> | Part Number |
|------------------|--------------------------|-------------|
| SBO 250-00.075 E | HyRac 62-65 ST           | 00445037    |
| SBO 210-0.16 E   | HyRac 73-76 ST           | 00445038    |
| SBO 210-0.32 E   | HyRac 89-92 ST           | 00445039    |
| SBO 210-0.5 E    | HyRac 100-105 ST         | 00444904    |
| SBO 330-0.6 E    | HyRac 110-118 ST         | 03059446    |
| SBO 210-0.75 E   | HyRac 121-129 ST         | 03059450    |
| SBO 200-1 E      | HyRac 133-142 ST         | 03059449    |
| SBO 140-1.4 E    | HyRac 143-151 ST         | 03059448    |
| SBO 210-1.4 E    | HyRac 152-159 ST         | 03059447    |
| SBO 100-2 E      | HyRac 160-167 ST         | 00444910    |
| SBO 210-2 E      | HS 167                   | 02110642    |
| SBO 210-2.8 E    | HS 167                   | 02110642    |
| SBO 250-3.5 E    | HS 167                   | 02110642    |
| SBO 330-0.75 E   | HyRac 121-129 ST         | 03059450    |
| SBO 330-1.4 E    | HyRac 143-151 ST         | 03059448    |
| SBO 330-2.0 E    | HyRac 167-175 ST         | 03059445    |
| SBO 330-3.5 E    | HyRac 167-175 ST         | 03059445    |

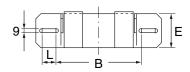
<sup>2)</sup> Only one clamp needed for all accumulators listed.

# SBO...A6... (Threaded type)

| Accumulator Type | Clamp Type       | Part Number |
|------------------|------------------|-------------|
| SBO 350-0.25 A6  | HyRac 110-118 ST | 03059446    |
| SBO 500-0.25 A6  | HyRac 110-118 ST | 03059446    |
| SBO 250-0.6 A6   | HyRac 133-142 ST | 03059449    |
| SBO 330-0.6 A6   | HyRac 133-142 ST | 03059449    |
| SBO 600-0.25 A6  | HyRac 143-151 ST | 03059448    |
| SBO 750-0.25 A6  | HyRac 143-151 ST | 03059448    |

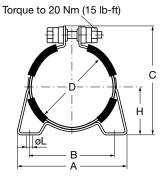
| Accumulator Type | Base Bracket Type | Part Number |
|------------------|-------------------|-------------|
| SBO 210-1.3 A6   | KMS 200           | 00359931    |
| SBO 400-1.3 A6   | KMS 210           | 00358989    |
| SBO 180-2 A6     | KMS 220           | 00359922    |
| SBO 250-2 A6     | KMS 220           | 00359922    |


Note: Either one clamp or one Base Bracket is needed for each accumulator listed.


# HYDAC Mounting Components

# **Dimensions**

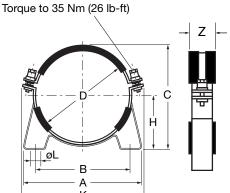
Use the Selection Guide on page 44 to select the appropriate components.


# HyRac - Stainless Steel Strap with swivel-bolt adjustment





| til Swivel-bolt  | J. J. J. |      |       |              |     |             |      |      |                    |
|------------------|----------|------|-------|--------------|-----|-------------|------|------|--------------------|
| Clamp Model      | A        | В    | С     | D<br>(range) | E   | н           | L    | s    | Weight<br>kg (lbs) |
| HyRac 62-65 ST   | 120      | 85   | 90    | 62-65        | 40  | 39-40.5     | 6    | 3    | 0.16               |
|                  | 4.72     | 3.34 | 3.54  | 2.4-2.6      | 1.6 | 1.5-1.6     | 0.24 | 0.12 | (0.35)             |
| HyRac 73-76 ST   | 120      | 85   | 101   | 73-76        | 40  | 49.5-46     | 6    | 3    | 0.16               |
|                  | 4.72     | 3.34 | 3.98  | 2.9-3.0      | 1.6 | 1.9-1.8     | 0.24 | 0.12 | (0.35)             |
| HyRac 89-92 ST   | 120      | 85   | 116   | 89-92        | 40  | 51.5-53     | 6    | 3    | 0.17               |
|                  | 4.72     | 3.34 | 4.57  | 3.5-3.6      | 1.6 | 2.0-2.1     | 0.24 | 0.12 | (0.37)             |
| HyRac 100-105 ST | 156      | 100  | 135   | 100-105      | 60  | 59-62       | 18   | 3    | 0.40               |
|                  | 6.14     | 3.94 | 5.31  | 3.9-4.1      | 2.4 | 2.3-2.4     | 0.71 | 0.12 | (0.88)             |
| HyRac 106-114 ST | 156      | 100  | 143   | 106-114      | 60  | 62.5-66     | 18   | 3    | 0.41               |
|                  | 6.14     | 3.94 | 5.63  | 4.2-4.5      | 2.4 | 2.5-2.6     | 0.71 | 0.12 | (0.9)              |
| HyRac 110-118 ST | 156      | 100  | 156   | 110-118      | 60  | 72.5-77     | 18   | 3    | 0.42               |
|                  | 6.14     | 3.94 | 6.14  | 4.3-4.6      | 2.4 | 2.8-3.0     | 0.71 | 0.12 | (0.93)             |
| HyRac 121-129 ST | 156      | 100  | 165   | 121-129      | 60  | 75.5-80     | 18   | 3    | 0.43               |
|                  | 6.14     | 3.91 | 6.50  | 4.8-5.1      | 2.4 | 3.0-3.1     | 0.71 | 0.12 | (0.95)             |
| HyRac 133-142 ST | 156      | 100  | 174   | 133-142      | 60  | 76.5-82     | 18   | 3    | 0.44               |
|                  | 6.14     | 3.91 | 6.85  | 5.2-5.6      | 2.4 | 3.0-3.2     | 0.71 | 0.12 | (0.97)             |
| HyRac 143-151 ST | 156      | 100  | 182   | 143-151      | 60  | 83-86.5     | 18   | 3    | 0.45               |
|                  | 6.14     | 3.91 | 7.17  | 5.6-5.9      | 2.4 | 3.3-3.4     | 0.71 | 0.12 | (0.99)             |
| HyRac 152-159 ST | 156      | 100  | 191   | 152-159      | 60  | 87-91       | 18   | 3    | 0.46               |
|                  | 6.14     | 3.91 | 7.52  | 6.0-6.3      | 2.4 | 3.4-3.6     | 0.71 | 0.12 | (1.01)             |
| HyRac 160-167 ST | 236      | 152  | 197   | 160-167      | 60  | 89-93       | 32   | 4    | 0.7                |
|                  | 9.29     | 5.98 | 7.76  | 6.3-6.6      | 2.4 | 3.5-3.7     | 1.3  | 0.16 | (1.54)             |
| HyRac 167-175 ST | 236      | 152  | 207   | 167-175      | 60  | 92.5-96.5   | 32   | 4    | 0.72               |
|                  | 9.29     | 5.98 | 8.15  | 6.6-6.9      | 2.4 | 3.6-3.8     | 1.3  | 0.16 | (1.59)             |
| HyRac 202-210 ST | 236      | 152  | 245   | 202-210      | 60  | 116-120     | 32   | 4    | 0.76               |
|                  | 9.29     | 5.98 | 9.65  | 7.9-8.3      | 2.4 | 4.6-4.7     | 1.3  | 0.16 | (1.68)             |
| HyRac 209-217 ST | 236      | 152  | 255   | 209-217      | 60  | 122.5-126.5 | 32   | 4    | 0.77               |
|                  | 9.29     | 5.98 | 10.04 | 8.2-8.5      | 2.4 | 4.8-5.0     | 1.3  | 0.16 | (1.70)             |


# HS - Regular Duty Clamp, with single center adjustment

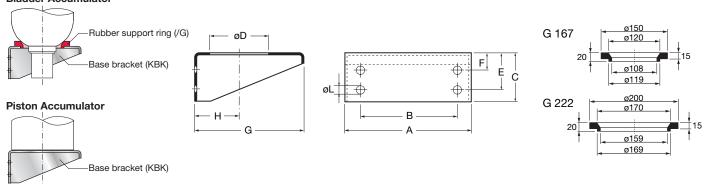




| Clamp Model | D    | D (range) | A    | В    | C (ref.) | н    | ØL   | Z    | Weight kg.(lbs) |
|-------------|------|-----------|------|------|----------|------|------|------|-----------------|
| HS 167      | 167  | 164-170   | 185  | 153  | 211      | 92.5 | 9    | 30   | 0.9             |
|             | 6.57 | 6.46-6.69 | 7.28 | 6.02 | 8.31     | 3.64 | 0.35 | 1.18 | 2.0             |

# HSS - Heavy Duty Clamp with two-piece construction




| Clamp<br>Model | D     | D (range)   | Α     | В     | C<br>(ref.) | н    | К     | ØL   | z    | Weight<br>kg.(lbs) |
|----------------|-------|-------------|-------|-------|-------------|------|-------|------|------|--------------------|
| HSS 219        | 219   | 216-222     | 268   | 216   | 240         | 123  | 285   | 15   | 40   | 1.7                |
|                | 8.62  | 8.50-8.74   | 10.55 | 8.50  | 9.45        | 4.84 | 11.22 | 0.59 | 1.57 | 3.8                |
| HSS 222/229    | 226   | 220-231     | 270   | 216   | 244         | 123  | 295   | 15   | 40   | 1.7                |
|                | 8.90  | 8.66-9.10   | 10.63 | 8.50  | 9.61        | 4.84 | 11.61 | 0.59 | 1.57 | 3.8                |
| HSS 242        | 242   | 231-242     | 268   | 216   | 265         | 136  | 305   | 15   | 40   | 1.7                |
|                | 9.53  | 9.10-9.53   | 10.55 | 8.50  | 10.43       | 5.35 | 12.01 | 0.59 | 1.57 | 3.8                |
| HSS 286        | 286   | 283-289     | 332   | 280   | 314         | 163  | 355   | 15   | 40   | 2.1                |
|                | 11.26 | 11.14-11.38 | 13.07 | 11.02 | 12.36       | 6.42 | 13.98 | 0.59 | 1.57 | 4.6                |
| HSS 310        | 310   | 307-313     | 332   | 280   | 333         | 170  | 380   | 15   | 40   | 2.1                |
|                | 12.20 | 12.09-12.32 | 13.07 | 11.02 | 13.11       | 6.69 | 14.96 | 0.59 | 1.57 | 4.6                |

Dimensions are in mm with inches shown below. Dimensions are for general information only,

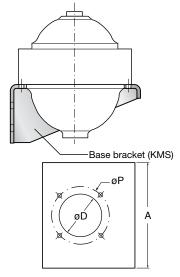
# Mounting Components HYDAC

# KBK - Base Bracket for Bladder and Piston Accumulators

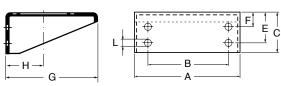
### **Bladder Accumulator**



Base Bracket with Rubber Support Ring


| Model     | A            | В           | С           | øD          | E          | F          | G           | н           | øL         | Weight<br>kg.(lbs) | Rubber<br>Support Ring |
|-----------|--------------|-------------|-------------|-------------|------------|------------|-------------|-------------|------------|--------------------|------------------------|
| KBK 167/G | 260<br>10.24 | 200<br>7.87 | 100<br>3.94 | 120<br>4.72 | 75<br>2.95 | 35<br>1.38 | 225<br>8.86 | 92<br>3.62  | 14<br>0.55 | 2.6<br>(5.7)       | G 167                  |
| KBK 222/G | 260<br>10.24 | 200<br>7.87 | 100<br>3.94 | 170<br>6.69 | 75<br>2.95 | 35<br>1.38 | 225<br>8.86 | 123<br>4.84 | 14<br>0.55 | 2.4<br>(5.3)       | G 222                  |

Base Brackets without Rubber Support Ring


| KBK 126 | 175<br>6.89  | 100<br>3.94 | 60<br>2.36  | 65<br>2.56  | 36<br>1.42  | N/A        | 150<br>5.91  | 77<br>3.03  | 14<br>0.55 | 1.1<br>(2.43)  | None |
|---------|--------------|-------------|-------------|-------------|-------------|------------|--------------|-------------|------------|----------------|------|
| KBK 219 | 270<br>10.63 | 180<br>7.09 | 100<br>3.94 | 135<br>5.31 | 80<br>3.15  | 40<br>1.57 | 250<br>9.84  | 123<br>4.84 | 14<br>0.55 | 6.5<br>(14.4)  | None |
| KBK 310 | 330<br>12.99 | 220<br>8.66 | 200<br>7.87 | 190<br>7.48 | 140<br>5.51 | 60<br>2.36 | 340<br>13.39 | 170<br>6.69 | 14<br>0.55 | 18.3<br>(40.4) | None |

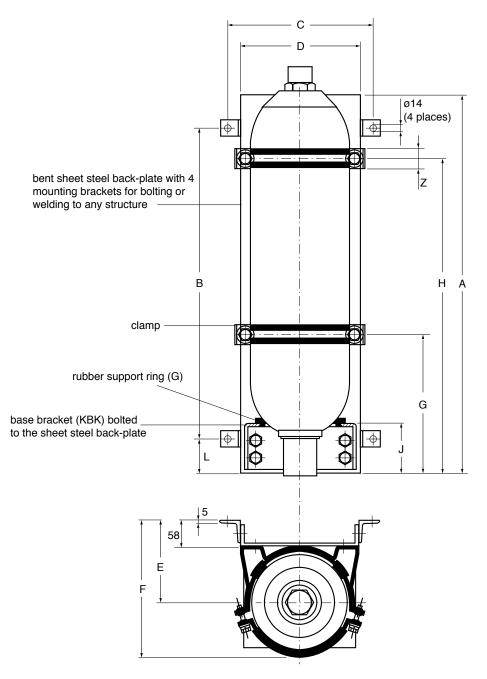
# KMS - Base Bracket for Threaded Diaphragm Accumulators





| Base<br>Bracket<br>Model | A     | В    | С    | øD    | øΡ    | E    | F    | G     | н    | øL   | Weight<br>kg.(lbs) |
|--------------------------|-------|------|------|-------|-------|------|------|-------|------|------|--------------------|
| KMS 200                  | 270   | 180  | 100  | 148   | 160   | 80   | 40   | 250   | 123  | 14   | 6.5                |
|                          | 10.63 | 7.09 | 3.94 | 5.83  | 6.30  | 3.15 | 1.57 | 9.84  | 4.84 | 0.55 | (14.4)             |
| KMS 210                  | 260   | 200  | 100  | 170   | 180   | 75   | 35   | 225   | 123  | 14   | 2.4                |
|                          | 10.24 | 7.87 | 3.94 | 6.69  | 7.09  | 2.95 | 1.38 | 8.86  | 4.84 | 0.55 | (5.3)              |
| KMS 220                  | 260   | 200  | 100  | 170   | 188   | 75   | 35   | 225   | 123  | 14   | 2.4                |
|                          | 10.24 | 7.87 | 3.94 | 6.69  | 7.40  | 2.95 | 1.38 | 8.86  | 4.84 | 0.55 | (5.3)              |
| KMS 250                  | 260   | 200  | 100  | 192   | 204   | 75   | 35   | 225   | 123  | 14   | 2.4                |
|                          | 10.24 | 7.87 | 3.94 | 7.56  | 8.03  | 2.95 | 1.38 | 8.86  | 4.84 | 0.55 | (5.3)              |
| KMS 280                  | 330   | 220  | 200  | 215   | 230   | 140  | 60   | 340   | 170  | 22   | 18.3               |
|                          | 12.99 | 8.66 | 7.87 | 8.46  | 9.06  | 5.51 | 2.36 | 13.39 | 6.69 | 0.87 | (40.4)             |
| KMS 300                  | 330   | 220  | 200  | 220   | 235   | 140  | 60   | 340   | 170  | 22   | 18.3               |
|                          | 12.99 | 8.66 | 7.87 | 8.66  | 9.25  | 5.51 | 2.36 | 13.39 | 6.69 | 0.87 | (40.4)             |
| KMS 310                  | 330   | 220  | 200  | 245   | 265   | 140  | 60   | 340   | 170  | 22   | 18.3               |
|                          | 12.99 | 8.66 | 7.87 | 9.65  | 10.43 | 5.51 | 2.36 | 13.39 | 6.69 | 0.87 | (40.4)             |
| KMS 320                  | 330   | 220  | 200  | 290   | 305   | 140  | 60   | 340   | 170  | 22   | 18.3               |
|                          | 12.99 | 8.66 | 7.87 | 11.42 | 12.01 | 5.51 | 2.36 | 13.39 | 6.69 | 0.87 | (40.4)             |

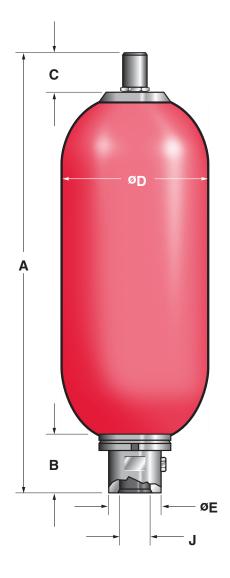



Dimensions are in mm with inches shown below.

Dimensions are for general information only,

all existing a bould be verified by requesting a partified by requesting a partified by requesting a partified by requesting a

# HYDAC Mounting Components

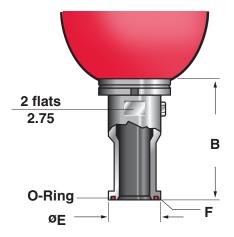

# SEB - Mounting Sets for SB 330 Bladder Accumulators



| 0-4         | Ac-             | Base Brad | cket | Clamp       |      |               |               | Din          | nension      | s in mn     | n (inches    | shown b      | elow)         |            |             |
|-------------|-----------------|-----------|------|-------------|------|---------------|---------------|--------------|--------------|-------------|--------------|--------------|---------------|------------|-------------|
| Set<br>Type | size in gallons | Туре      | Qty. | Туре        | Qty. | A             | В             | С            | D            | E           | F (Ref)      | G            | н             | L          | J           |
| SEB 4       | 1               | KBK 167/G | 1    | HS 167      | 1    | 410<br>16.14  | 320<br>12.60  | 330<br>12.99 | 270<br>10.63 | 152<br>5.98 | 265<br>10.43 | -            | 270<br>10.63  | 45<br>1.77 | 95<br>3.74  |
| SEB 10      | 2.5             | KBK 222/G | 1    | HSS 222/229 | 1    | 570<br>22.44  | 420<br>16.54  | 330<br>12.99 | 270<br>10.63 | 180<br>7.09 | 317<br>12.48 | -            | 330<br>12.99  | 75<br>2.95 | 111<br>4.37 |
| SEB 20      | 5               | KBK 222/G | 1    | HSS 222/229 | 1    | 570<br>22.44  | 420<br>16.54  | 330<br>12.99 | 270<br>10.63 | 180<br>7.09 | 317<br>12.48 | -            | 500<br>19.69  | 75<br>2.95 | 111<br>4.37 |
| SEB 32      | 10              | KBK 222/G | 1    | HSS 222/229 | 2    | 1340<br>52.76 | 1190<br>46.85 | 330<br>12.99 | 270<br>10.63 | 180<br>7.09 | 317<br>12.48 | 500<br>19.69 | 1160<br>45.67 | 75<br>2.95 | 111<br>4.37 |
| SEB 54      | 15              | KBK 222/G | 1    | HSS 222/229 | 2    | 1340<br>52.76 | 1190<br>46.85 | 330<br>12.99 | 270<br>10.63 | 180<br>7.09 | 317<br>12.48 | 500<br>19.69 | 1160<br>45.67 | 75<br>2.95 | 111<br>4.37 |



# **Bladder Accumulators SB Series Bottom Repairable**




# **SB 330...** (3000 psi)

| Size | Nom.<br>Vol.<br>gal. | Eff. Gas<br>Vol. in <sup>3</sup> | Weight<br>Ibs./(kg) | A              | В           | С           | ØD           | ØE          | Thre<br>NP |    | Q <sup>(1</sup><br>gpm |
|------|----------------------|----------------------------------|---------------------|----------------|-------------|-------------|--------------|-------------|------------|----|------------------------|
| 10   | 2 1/2                | 566                              | 86<br>(39)          | 22.0<br>(559)  | 3.1<br>(80) | 2.3<br>(58) | 9.1<br>(231) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 20   | 5                    | 1125                             | 140<br>(63)         | 34.5<br>(876)  | 3.1<br>(80) | 2.3<br>(58) | 9.1<br>(231) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 32   | 10                   | 2080                             | 226<br>(102)        | 54.7<br>(1390) | 3.1<br>(80) | 2.3<br>(58) | 9.1<br>(231) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 42   | 11                   | 2320                             | 270<br>(123)        | 60.2<br>(1530) | 3.1<br>(80) | 2.3<br>(58) | 9.1<br>(231) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 54   | 15                   | 3205                             | 330<br>(150)        | 78.3<br>(1990) | 3.1<br>(80) | 2.3<br>(58) | 9.1<br>(231) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |

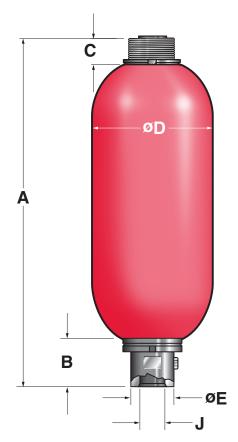
# **SB 600...** (5000 psi)

| Size | Nom.<br>Vol.<br>gal. | Eff. Gas<br>Vol. in³ | Weight<br>lbs./<br>(kg) | A              | В           | С           | ØD           | ØE          | Thre<br>NP |    | Q <sup>(1</sup><br>gpm |
|------|----------------------|----------------------|-------------------------|----------------|-------------|-------------|--------------|-------------|------------|----|------------------------|
| 10   | 2 1/2                | 566                  | 114<br>(52)             | 22.4<br>(568)  | 3.1<br>(80) | 2.8<br>(70) | 9.1<br>(232) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 20   | 5                    | 1125                 | 162<br>(73)             | 35.0<br>(888)  | 3.1<br>(80) | 2.8<br>(70) | 9.1<br>(232) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 32   | 10                   | 2080                 | 250<br>(113)            | 55.2<br>(1402) | 3.1<br>(80) | 2.8<br>(70) | 9.1<br>(232) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 54   | 15                   | 3180                 | 370<br>(168)            | 78.8<br>(2002) | 3.1<br>(80) | 2.8<br>(70) | 9.1<br>(232) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |



# Split Flange Connections (sizes 10 - 54)

| Series                 | В     | øΕ     | Split Flange Connection F | Q <sup>(1</sup> gpm |
|------------------------|-------|--------|---------------------------|---------------------|
| SB 330                 | 4.1   | 2.8    | SAE 2" – 3000 psi         | 240                 |
| SB 330 T <sup>(2</sup> | (104) | (71.4) | Code 61                   |                     |
| SB 600                 | 5.5   | 2.5    | SAE 1 1/2" – 5000 psi     | 240                 |
| SB 600 T <sup>(2</sup> | (140) | (63.5) | Code 62                   |                     |


Dimensions are for general information only, all critical dimensions should be verified. Dimensions are in inches/(mm) and lbs/(kg)

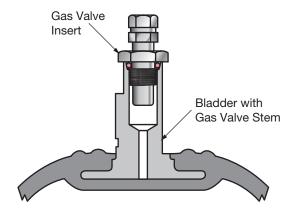
1) Maximum discharge flow rate recommended for vertically mounted accumulators.

2) sizes 20 to 54 only

# (HYDAC) Oll, Gas & Marine

# Top Repairable



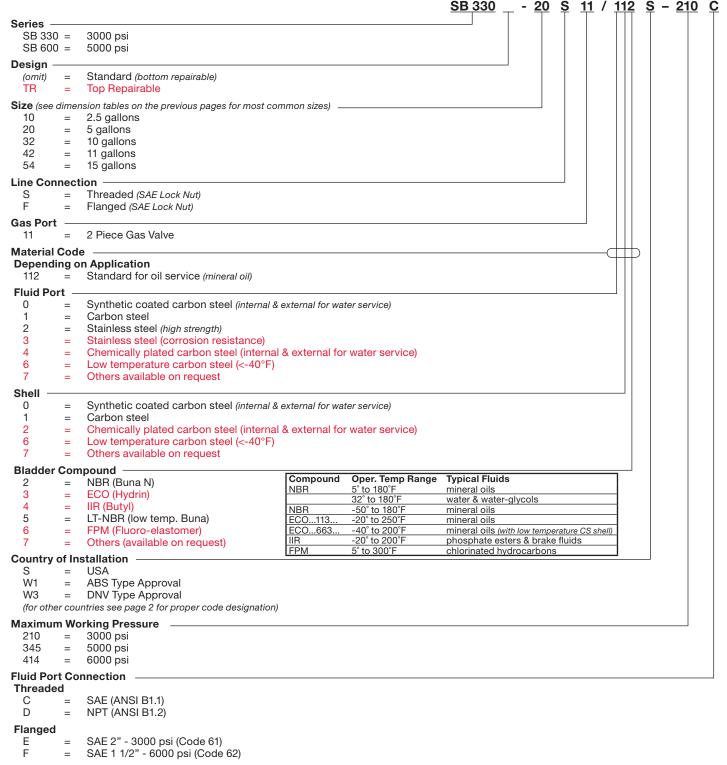

**SB 330 TR...** (3000 psi)

| Size | Nom.<br>Vol.<br>gal. | Eff. Gas<br>Vol. in <sup>3</sup> | Weight       | A              | В           | С           | ØD           | ØE          | Thre<br>NP |    | Q <sup>(1</sup><br>gpm |
|------|----------------------|----------------------------------|--------------|----------------|-------------|-------------|--------------|-------------|------------|----|------------------------|
| 10   | 2 1/2                | 566                              | 94<br>(43)   | 21.3<br>(540)  | 3.1<br>(80) | 1.6<br>(40) | 9.1<br>(231) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 20   | 5                    | 1125                             | 140<br>(63)  | 34.8<br>(883)  | 3.1<br>(80) | 1.6<br>(40) | 9.1<br>(231) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 32   | 10                   | 2080                             | 226<br>(102) | 55.0<br>(1397) | 3.1<br>(80) | 1.6<br>(40) | 9.1<br>(231) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 42   | 11                   | 2320                             | 270<br>(123) | 60.2<br>(1530) | 3.1<br>(80) | 1.6<br>(40) | 9.1<br>(231) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 54   | 15                   | 3205                             | 330<br>(150) | 78.6<br>(1997) | 3.1<br>(80) | 1.6<br>(40) | 9.1<br>(231) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |

SB 600 TR... (5000 psi)

| Size | Nom.<br>Vol.<br>gal. | Eff. Gas<br>Vol. in³ | Weight       | A              | В           | С           | ØD           | ØE          | Thre<br>NP |    | Q <sup>(1</sup><br>gpm |
|------|----------------------|----------------------|--------------|----------------|-------------|-------------|--------------|-------------|------------|----|------------------------|
| 20   | 5                    | 1125                 | 172<br>(78)  | 33.5<br>(851)  | 3.1<br>(80) | 1.6<br>(40) | 9.1<br>(232) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 32   | 10                   | 2080                 | 260<br>(118) | 53.7<br>(1364) | 3.1<br>(80) | 1.6<br>(40) | 9.1<br>(232) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |
| 54   | 15                   | 3205                 | 380<br>(172) | 77.3<br>(1964) | 3.1<br>(80) | 1.6<br>(40) | 9.1<br>(232) | 3.0<br>(76) | 1 1/4      | 2" | 240                    |

# 2 Piece Gas Valve




Dimensions are for general information only, all critical dimensions should be verified. Dimensions are in inches/(mm) and lbs/(kg)

1) Maximum discharge flow rate recommended for vertically mounted accumulators.



## **Model Code**



Model Codes containing RED selections are non-standard items – Contact HYDAC for information and availability

Not all combinations are available

Note: For the full line of bladder accumulators please refer to page 3.

# HYDAC Oll, Gas & Marine

# **FPO Series Charging and Gauging Units**



# **Description**

To maintain system performance HYDAC recommends that the gas precharge pressure is checked regularly. A loss in the gas precharge pressure will cause a drop in the system efficiency and could cause damage to the bladder, diaphragm, or piston accumulator.

HYDAC charging and gauging units allow hydro-pneumatic accumulators to be precharged with dry nitrogen. For these purposes, a charging and gauging unit is connected to a commercially available nitrogen bottle via a flexible charging hose.

These units also allow maintenance personnel to check the current gas precharge pressure of an accumulator. For critical systems, consider the use of a permanent gauging block which will allow constant monitoring.

All HYDAC charging and gauging units incorporate a gauge and check valve in the charging connection, and a manual bleed valve with a T-handle.

FPO 210 F

# **Model Code**

Charging and Gauging Unit

FPO = for use with Gas Valve Version 4 (8VI-ISO 4570) for SB, SBO and SK

Gauge Pressure Range

210 = 0 to 3000 psi (0 to 210 bar)

**Charging Hose** 

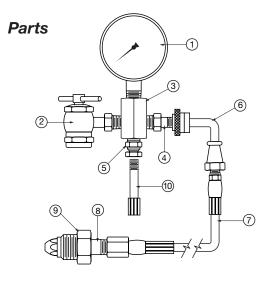
F = with nitrogen bottle connection CGA-580

Charging Hose Length

3.0 = 10 ft. (3 m)

Case

K = plastic carrying case (standard)


### **Additional Accessories:**

Gas Valve Extension Rod - to be used with top repairable accumulators

Operating and Installation Instructions are included with each charging kit.

This is also available for download in PDF format on our web site: www.hydacusa.com

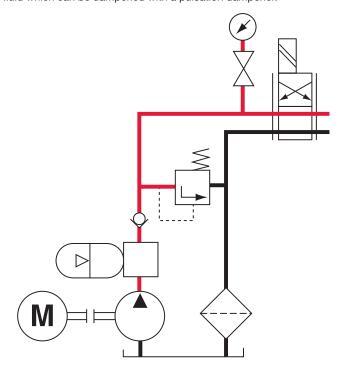
Note: For the full line of charging & gauging units please refer to page 37



| Part Description                             | Item | Quantity | Part No.        |
|----------------------------------------------|------|----------|-----------------|
| FPO 210 Replacement Kit consists of:         |      |          | 02083385        |
| Pressure Gauge, 3000 PSI                     | 1    | 1        | 02701622        |
| T-Handle Lock Chuck                          | 2    | 1        | 02701615        |
| Charging Manifold, FPO                       | 3    | 1        | consult factory |
| Tank Valve                                   | 4    | 1        | 02701617        |
| Bleeder Valve                                | 5    | 1        | consult factory |
| Hose Assembly FPO 210 (CGA 580) consists of: |      |          | 02086622        |
| High Pressure Coupling (swivel) 1/8" NPT     | 6    | 1        | 02701590        |
| Hose, FPO 3000 PSI, 3m                       | 7    | 1        | 02701621        |
| Nipple Gland, CGA-580                        | 8    | 1        | 02701620        |
| Nut, CGA-580                                 | 9    | 1        | 02701619        |
| Top Repairable Gas Valve Extention           | 10   | 1        | 02701741        |

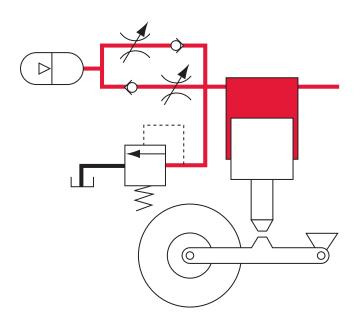


# **Typical Applications**


HYDAC accumulators can be used in a wide variety of applications, some of which are listed below:

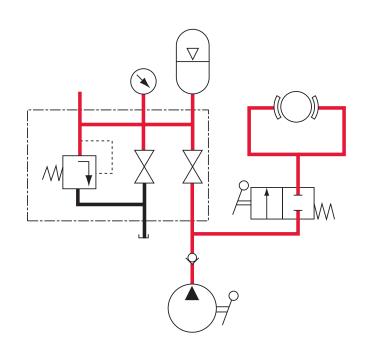
- Shock Absorption
- Pulsation Dampening
- Energy Storage
- Emergency Operation
- Force Equilibrium
- Leakage Compensation
- Volume Compensation

The following schematics are examples showing how HYDAC accumulators are used in the above listed applications


# Pulsation Dampeners for Displacement Pumps

The non-uniformity of displacement pumps creates pulsations in the fluid which can be dampened with a pulsation dampener.

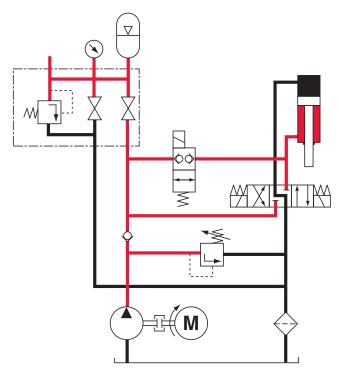



# Spring Element

The compressibility of the gas in the accumulator works like a spring. By throttling the flow in and out of the accumulator, the spring stiffness can be adjusted.

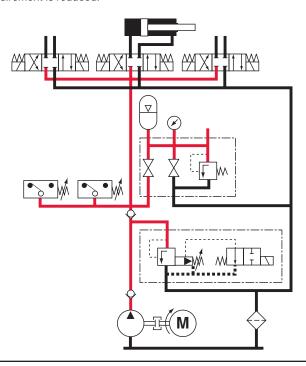


# **Emergency Brakes**


Emergency actuation, the accumulator provides the stored hydraulic energy to apply the brake should the main power source fail.

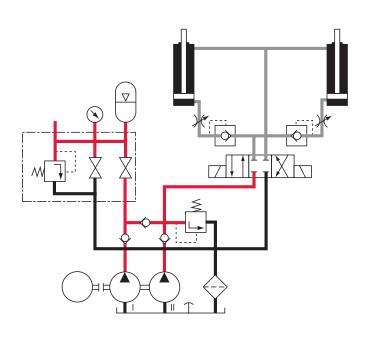


# HYDAC Applications


# Emergency Operation of a Hydraulic Cylinder

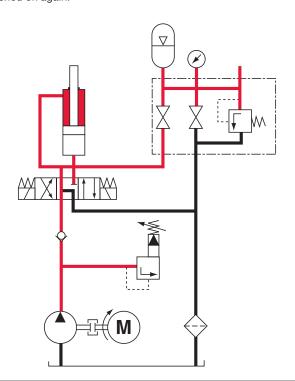
In an emergency condition, e.g., during a power failure, the accumulator automatically drives the system *(cylinder)* to a fail safe position




# Energy Storage in an Injection Molding Machine

The hydraulic energy stored during a pause in the work cycle, is used to supplement the pump and increase the power output for peak requirements. Through design, the electrical power requirement is reduced.




# Energy Storage and Shortening of Stroke Time

The hydraulic energy stored during a pause in the work cycle, is used to supplement the pump and shorten the stroke time.

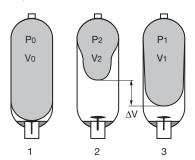


# Leakage Oil Compensation

The accumulator is charged to a pre-determined pressure. The pump is switched off. Now the accumulator makes up for the leakage of the system until the minimum pressure is reached and the pump is switched on again.



# Sizing Accumulators (HYDAC)



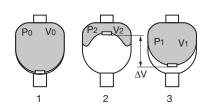

# **Accumulators**

# **Operation**

# Bladder

- 1 The bladder is precharged with nitrogen. This causes the fluid valve to close, preventing the bladder from extruding out of the fluid port.
- 2 Accumulator at maximum working pressure. The difference in volume ( $\Delta V$ ) between the maximum and the minimum working pressure corresponds to the effective fluid volume.
- 3 When the minimum working pressure is reached, a small amount of fluid should remain in the accumulator. This is to prevent the valve from chafing the bladder on each cycle. Thus, po should always be lower than p₁.




p<sub>0</sub> = gas precharge

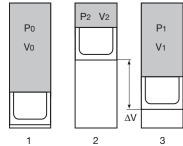
p<sub>1</sub> = minimum working pressure

p<sub>2</sub> = maximum working pressure

# Diaphragm

- 1 The diaphragm is precharged with nitrogen. This causes the poppet to close, preventing the diaphragm from extruding out of the fluid port.
- 2 Accumulator at maximum working pressure. The difference in volume ( $\Delta V$ ) between the maximum and the minimum working pressure corresponds to the effective fluid volume.
- 3 When the minimum working pressure is reached, a small amount of fluid should remain in the accumulator. This is to prevent the poppet from impacting the base on each cycle. Thus, po should always be lower than p<sub>1</sub>.




V<sub>o</sub> = effective gas volume of the accumulator

V, = gas volume at p,

V = gas volume at p

### **Piston**

- 1 The piston accumulator is precharged with nitrogen. The piston sits against the end cap and covers the fluid connection.
- 2 Accumulator at maximum working pressure. The difference in volume (ΔV) between the maximum and the minimum working pressure corresponds to the effective fluid volume:
- 3 When the minimum working pressure is reached, a small amount of fluid should remain in the accumulator. This is to prevent the piston from impacting the end cap on each cycle. Thus, po should always be lower



T<sub>0</sub> = temperature at precharging

T, = minimum operating temperature

T<sub>2</sub> = maximum operating temperature

# Precharge Recommendations

### For energy storage:

 $p_0 = 0.9 \times p_1$ 

p, = minimum working pressure

## For shock absorption:

 $p_0 = (0.6 \text{ to } 0.9) \times p_m$ 

p<sub>m</sub> = median working pressure at free flow

### For pulsation dampening:

 $p_0 = (0.6 \text{ to } 0.8) \times p_m$ 

p<sub>m</sub> = median working pressure

# Temperature Effect

To ensure that the recommended gas precharge pressure is maintained, even at relatively low or high operating temperatures, the gas precharge pressure should be adjusted for temperature. The formula below relates the precharge temperature (T<sub>0</sub>) to the operating temperature (T). Please refer to the sizing example on page 55.

# **Fahrenheit**

= precharge temperature in °F

= maximum operating temperature in °F

 $p_0,T_0$ = gas precharge pressure at precharge temperature

 $p_0,T_2$ = gas precharge pressure at maximum operating temperature

 $p_0, T_0 = p_0, T_2 \times \left(\frac{T_0 + 273}{T_2 + 273}\right)$ 

= precharge temperature in °C

= maximum operating temperature in °C

 $p_0,T_0$ gas precharge pressure at precharge temperature

 $p_0,T_2$ gas precharge pressure at maximum operating temperature

# HYDAC Sizing Accumulators

### **Formulas**

The compression and expansion processes taking place in hydro-pneumatic accumulator are governed by the general gas laws.

The following applies for ideal gases:

$$p_0 \times V_0^n = p_1 \times V_1^n = p_2 \times V_2^n$$
,

where the time related change of state is represented by the polytropic exponent "n". For slow expansion and compression processes which occur almost isothermically, the polytropic exponent can be set at n = 1.

For rapid processes, the adiabatic change of state can be calculated using n = k = 1.4 (for nitrogen as a diatomic gas)<sup>1</sup>.

For pressures above 3000 psi the real gas behavior deviates considerably from the ideal one, which reduces the effective fluid volume  $\Delta V$ . In such cases a correction is made which takes into account a change in the adiabatic exponent (k).

By using the following formulas, the required gas volume  $V_{\mbox{\tiny 0}}$  can be calculated for various calculations.

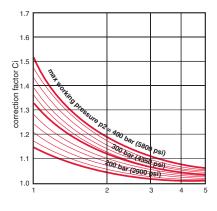
Low pressures of up to 150 psi must always be used as absolute pressures in the formulas.

## **Calculation Formulas**

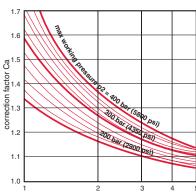
# polytropic: $V_{o} = \frac{\Delta V}{\left(\frac{p_{o}}{p_{1}}\right)^{1/n} - \left(\frac{p_{o}}{p_{2}}\right)^{1/n}}$ isothermal: $V_{o} = \frac{\Delta V}{\left(\frac{p_{o}}{p_{1}}\right) - \left(\frac{p_{o}}{p_{2}}\right)^{1/n}}$ adiabatic: (n = k = 1.4) $V_{o} = \frac{\Delta V}{\left(\frac{p_{o}}{p_{1}}\right)^{0.714} - \left(\frac{p_{o}}{p_{2}}\right)^{0.714}}$

Correction factors to take into account the real gas behavior<sup>(2</sup>

For isothermal change of condition:


$$V_{0,real} = C_i \times V_{0,ideal} \text{ or } \Delta V_{0,real} = \frac{\Delta V_{ideal}}{C_i}$$

for adiabatic change of condition:


$$V_{0,real} = C_a \times V_{0,ideal}$$
 or  $\Delta V_{real} = \frac{\Delta V_{ideal}}{C_a}$ 

- An estimate of the accumulator size and a selection of precharge pressure can be calculated similar to the sample shown.
   For more accurate sizing and design assistance, please contact HYDAC.
- 2. The correction factors can be taken from the graphs in the next column, depending on the pressure ratio p2/p1 and the maximum working pressure p2, which is given as a parameter, for an isothermal or adiabatic change of condition.

# Correction factor for isothermal change of condition



# Correction factor for adiabatic change of condition



# Sizing Example

An additional operation is to be added to an existing machine which requires 1.35 gallons of oil in 2.5 seconds for optimal operation. The system must operate between 3000 psi and 1500 psi. The required recharge time is 8 seconds with an operating temperature range of 75 to 120°F.

### Given:

maximum working pressure  $p_2 = 3000 \text{ psi}$ 

minimum working pressure  $p_1 = 1500 \text{ psi}$ 

effective fluid volume  $\Delta V = 1.35$  gallons

maximum operating temperature  $T_2 = 120$ °F

minimum operating temperature

### Required:

- necessary accumulator size, taking into account the real gas behavior
- 2. gas precharge pressure p<sub>o</sub> at 68°F (T<sub>o</sub>)
- 3. select accumulator size and type

### Solution:

Since it is a rapid process, the change of condition of the gas can be assumed to be adiabatic.

- 1. Determination of required gas volume:
- a) gas precharge pressure at T<sub>2</sub>:

$$p_0, T_2 = 0.9 \times p_1$$
  
= 0.9 x 1500 = 1350 psi

b) gas precharge pressure at T<sub>1</sub>:

$$p_0 = p_{0, T_2 x} \left( \frac{T_1 + 460}{T_2 + 460} \right)$$

$$= 1350 \text{ psi } x \left( \frac{75 + 460}{120 + 460} \right)$$

$$\approx 1245 \text{ psi}$$

c) ideal gas volume:

$$\begin{aligned} V_{0 \text{ ideal}} &= \frac{\Delta V}{\left(\frac{p_{0}, (T_{,l})}{p_{1}}\right)^{0.714} - \left(\frac{p_{0}, (T_{,l})}{p_{2}}\right)^{0.714}} \\ &= \frac{1.35}{\left(\frac{1245}{1500}\right)^{0.714} - \left(\frac{1245}{3000}\right)^{0.714}} \end{aligned}$$

= 3.95 gallons

d) correction factor from diagram:

$$\frac{p_2}{p_1} = 2 - Ca \approx 1.16$$

e) real gas volume:

$$V_{0, real} = C_a \times V_{0, ideal}$$
  
= 1.16 x 3.95  
= 4.6 gal.

2. Determination of gas precharge pressure p<sub>0</sub> at 68°F:

$$p_0, T_0 = p_0, T_2 x$$
  
= 1350 psi x  $\left(\frac{T_0 + 460}{T_2 + 460}\right)$   
 $\approx 1230$  psi

3. Selected: Size 20 (5 gallon)

Model: SB 330 -20A1 / 112S - 210C Precharged to 1230 psi at 68°F

# Sizing Accumulators HYDAC

# **Pulsation Dampeners & Suction Flow Stabilizers**

On the suction and pressure side of piston pumps almost identical conditions regarding non uniformity of the rate occur. Therefore the same formula for determining the effective gas volume are used for calculating the dampener size. That in the end two totally different dampener types are used is due to the different acceleration and pressure ratios on the two sides.

Not only is the gas volume  $V_0$  a decisive factor but also the connection size of the pump has to be taken into account when selecting the pulsation dampener. In order to avoid additional cross section changes which represent reflection points for vibrations, and also to keep pressure drops to a reasonable level, the connection cross section of the dampener has to be the same as the pipe line.

The gas volume  ${\rm V_0}$  of the dampener is determined with the aid of the formula for adiabatic changes of state.

A simulation of the pressure performance can be carried out by means of a computer program for real pipe line conditions.



$$V_0 (I) = \frac{\Delta V}{0.695 \times \left[ 1 - \left( \frac{100}{100 + x} \right)^{0.714} \right]}$$

$$X (\pm\%) = \frac{100}{\left(1 - \frac{\Delta V}{0.695 \times V_0}\right)^{1.4}} - 100$$

$$\Delta V (I) = x q$$

$$X (\pm\%) = \frac{\hat{p} - p_m}{p_m} \times 100 = \frac{\check{p} - p_m}{p_m} \times 100$$

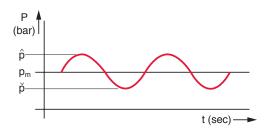
V<sub>0</sub> = required gas volume

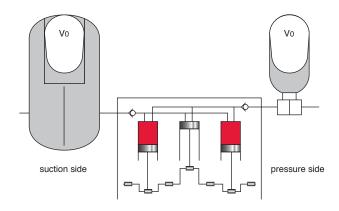
 $\Delta V$  = fluctuating fluid volume

q(l) = stroke volume per cylinder

 $\hat{p} - p_m = \check{p} - p_m = amplitude$  of pressure fluctuations

X = residual pulsations


p = max. working pressure


p = min. working pressure

pm = pump flow rate or pressure in the suction line

= Coefficient of cyclic variation of the pump

z = No. of compressions / effective cylinders per revolution factors for other types, i.e. gear, axial, and radial piston pumps on request





| Types of Pump | z      |            |
|---------------|--------|------------|
| Gear Pump     | 7 - 14 | 0.1 - 0.3  |
| Piston Pump   | 1 - 11 | 0.01 - 0.6 |
| e.g.          | 1      | 0.6        |
|               | 2      | 0.25       |
|               | 4      | 0.12       |
|               | 3      | 0.13       |
|               | 5      | 0.05       |
|               | 6      | 0.13       |
|               | 7      | 0.02       |
|               | 9      | 0.01       |

# Calculation Example

### Parameters:

Single acting 3-plunger pump

| piston diameter    | 2.36 inches | (60 mm)      |
|--------------------|-------------|--------------|
| piston stroke      | 3.15        | (80 mm)      |
| rpm                | 370 min-1   |              |
| flow rate          | 64.44 gpm   | (244 I/min.) |
| operating temp.    | 68°F        | (20°C)       |
| operating pressure |             |              |
| pressure side      | 3625 psi    | (250 bar)    |
| suction side       | 58 psi      | (4 bar)      |
|                    |             |              |

### Required:

Suction flow stabilizer for a residual pulsation of  $\pm 0.5\%$ 

### Solution:

a) Determination of required suction flow stabilizer

$$V_0 (in^3) = \frac{0.13 \cdot \left(\frac{2.36^2 \times \pi}{4}\right) \cdot 3.15}{0.695 \left[1 - \left(\frac{100}{100 + 2.5}\right)^{0.714}\right]}$$

Selected: SB 330 P-20 (see table on page 24)

b) Determination of required pulsation dampener

$$V_0 \text{ (in}^3\text{)} = \frac{0.13 \cdot \left(\frac{2.36^2 \times \pi}{4}\right) \cdot 3.15}{0.695 \left[1 - \left(\frac{100}{100 + 0.5}\right)^{0.714}\right]}$$

Selected: SB 330 P-20 (see table on page 26)

For assistance in sizing pulsation dampeners, shock absorbers, and suction stabilizers, please contact the HYDAC Accumulator Group at 1-877-GO HYDAC.

# HYDAC Sizing Accumulators

# Bladder, Diaphragm, & Piston Form

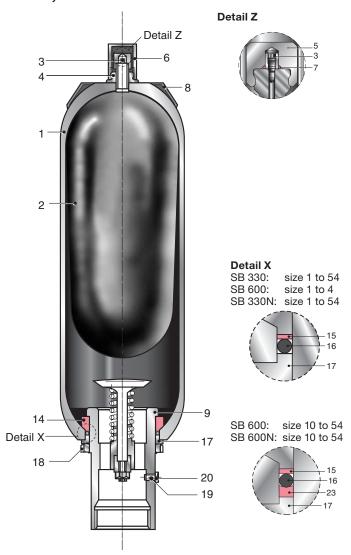
| Name                                                                    | Title       |                              |
|-------------------------------------------------------------------------|-------------|------------------------------|
| Company                                                                 | E-mail      |                              |
| Address                                                                 |             |                              |
| Phone                                                                   | State       | Zip                          |
| Phone                                                                   | Fax         | ·                            |
|                                                                         |             |                              |
| Please attach any special requirement                                   | ents or dra | wings to the fax or e-mail.  |
| Operation of Pump  Continuous Operation                                 |             |                              |
| Emergency Operation                                                     |             |                              |
| Maximum Operating Pressure (P2)                                         | PSI         |                              |
| Minimum Operating Pressure (P1)                                         | PSI         |                              |
| Precharge Pressure at 68°F (20°C) (P0)                                  | PSI         |                              |
| Temperature Range of Environment (T)                                    | *F          |                              |
| Temperature Range of Fluid or System (TF)                               | °F          |                              |
| Pump Flow Rate (QP)                                                     | GPM         |                              |
| Total Cycle Time of System (TE)                                         | Sec.        |                              |
| Number of Actuators (cylinders, etc.) (NV)                              |             |                              |
| (tt)                                                                    |             |                              |
| Actuator Time Schedule and Flow                                         |             |                              |
| QVi = Required Actuator Flow (GPM) Ei = Actuator Start T                | -imo        | Ai = Actuator Shut Down Time |
| (i = 1  for first actuator,  i = 2  for second actuator, etc. up to NV) | IIIIe       | AI - Actuator Shut Down Time |
| QV1 = E1 =                                                              |             | A1 =                         |
| QV2 = E2 =                                                              | $\equiv$    | A2 =                         |
| QV3 = E3 =                                                              | $\equiv$    | A3 =                         |
| QV4 = E4 =                                                              | $\equiv$    | A4 =                         |
| QV5 = E5 =                                                              | $\equiv$    | A5 =                         |
|                                                                         |             |                              |
| Fluid                                                                   |             |                              |
|                                                                         |             |                              |
|                                                                         |             |                              |
| Required Mounting Orientation                                           |             |                              |
|                                                                         |             |                              |
|                                                                         |             |                              |
| Country of Final Installation (for country codes please see             | page 2)     |                              |
|                                                                         |             |                              |
| Required Quantity                                                       |             |                              |
|                                                                         | Competitor  | Quantity                     |
| Additional Remarks                                                      |             |                              |
| Auditional Remarks                                                      |             |                              |
|                                                                         |             |                              |
|                                                                         |             |                              |



# **Shock Applications Form**

| Name                                                                                  | Title                        | <b>;</b>              |                      |             |
|---------------------------------------------------------------------------------------|------------------------------|-----------------------|----------------------|-------------|
| Company                                                                               | E-m                          | ail                   |                      |             |
| ddress                                                                                |                              |                       |                      |             |
| hone                                                                                  | Stat                         | e                     | Zip                  |             |
| hone                                                                                  | Fax                          |                       |                      |             |
|                                                                                       |                              |                       |                      |             |
| Please attach any specia                                                              |                              |                       |                      | or e-mail.  |
| What is the source of the shock?                                                      | i.e. valve closing, pump sta | art, or other - pleas | e describe)          |             |
|                                                                                       |                              |                       |                      |             |
| At the instance the shock occurs                                                      | what is the                  |                       |                      |             |
| Flow rate: GPM                                                                        | wildt is tile                |                       |                      |             |
| Normal Operating Pressure: PSI ; Maxi                                                 | mum Spike Pressure:          | PSI                   |                      |             |
| The system's maximum allowable design pressure:                                       |                              |                       |                      |             |
| Information is required on all piping from the shock s                                |                              | d location of the     | shock absorber (ac   | cumulator). |
| Please continue to answer the following:                                              |                              |                       |                      |             |
| Total Number of pipes: (up to 10 pipes)                                               |                              |                       |                      |             |
| O                                                                                     |                              |                       |                      |             |
| Starting at the shock source, plea                                                    | se answer the                | following:            |                      |             |
| Inner Length                                                                          |                              | Dina                  | Inner                | Length      |
| Pipe Diameter (feet)                                                                  |                              | Pipe                  | Diameter<br>(inches) | (feet)      |
| 1                                                                                     |                              | 6 (                   |                      |             |
| 2                                                                                     |                              | 7                     |                      |             |
| 3                                                                                     |                              | 8                     |                      |             |
| 4                                                                                     |                              | 9                     | $\longrightarrow$    |             |
| 5                                                                                     |                              | 10                    |                      |             |
|                                                                                       |                              | 10                    |                      |             |
| f the vertical height from the check source to the on                                 | tioinated location of the    | ahaak ahaarbar        | is greater than 10 t | foot        |
| If the vertical height from the shock source to the an<br>please state this distance. | licipated location of the    | SHOCK absorber        | is greater than 10   | leet        |
| Vertical Height:feet                                                                  |                              |                       |                      |             |
|                                                                                       |                              |                       |                      |             |
| Fluid                                                                                 |                              |                       |                      |             |
|                                                                                       |                              |                       |                      |             |
| Required Mounting Orientation                                                         |                              |                       |                      |             |
| nequired Mounting Orientation                                                         |                              |                       |                      |             |
|                                                                                       |                              |                       |                      |             |
|                                                                                       |                              |                       |                      |             |
| Country of Final Installation (for coun                                               | ry codes please see page     | 2)                    |                      |             |
|                                                                                       |                              |                       |                      |             |
|                                                                                       |                              |                       |                      |             |
| Required Quantity                                                                     |                              |                       |                      |             |
| Annual Usage Target Price                                                             |                              | Competitor            |                      | Quantity    |
|                                                                                       |                              |                       |                      |             |
| Additional Remarks                                                                    |                              |                       |                      |             |
|                                                                                       |                              |                       |                      |             |
|                                                                                       |                              |                       |                      |             |
|                                                                                       |                              |                       |                      |             |
|                                                                                       |                              |                       |                      |             |

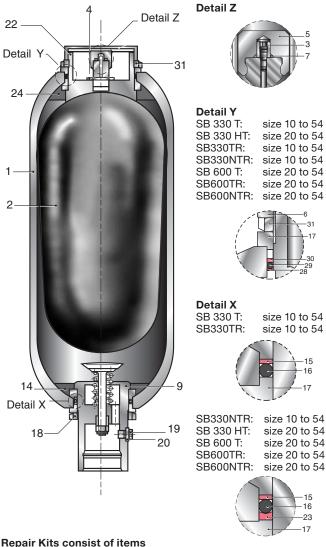
# HYDAC Sizing Accumulators


# **Pulsation Dampening Form**

| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Title                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E-mail                                        |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                        | State Zip                                     |
| Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fax                                           |
| Please attach any special re                                                                                                                                                                                                                                                                                                                                                                                                                                 | equirements or drawings to the fax or e-mail. |
| What type of pump is causing the pup Please name or describe (ie piston pump, gear pump, etc.)                                                                                                                                                                                                                                                                                                                                                               | ulsation?                                     |
| What is the  Flow rate: GPM  Pump: RPM  Pump Piston Diameter: (inches)  Pump Piston Stoke: (inches)  Number of Rotating Elements: (3 piston, 13 to 0)  Operating Pressure: psi  The system's maximum allowable pressure:  Line Size where pulsation dampener will be fitted into: (The I.D. of the line is what is really requited)  Note: A pulsation dampener should be always be installed as clooptimize its performance. A pulsation dampener should in | _ psi                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
| Fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
| Required Mounting Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| Country of Final Installation (for country co                                                                                                                                                                                                                                                                                                                                                                                                                | odes please see page 2)                       |
| Required Quantity  Annual Usage Target Price                                                                                                                                                                                                                                                                                                                                                                                                                 | Competitor Quantity                           |
| Additional Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |

# Seal Kits & Spare Parts HYDAC

# **Bladder Accumulators**


# Spare Parts Bottom Repairable SB330, SB330H, SB330N SB600, SB600N



Repair Kits consist of items 2, 3, 4 (SB 600 only), 5, 7, 15, 16, 23 (where applicable)

Seal Kits consist of items 15, 16, 23 (where applicable)

# Top Repairable SB330T, SB330HT, SB330TR, SB330NTR, SB 600T, SB600TR, SB600NTR



SB330T, SB330TR, SB330NTR SB600T, SB600TR, SB600NTR: 2, 3, 5, 7, 15, 16, 23 (where applicable), 28, 29, 30

SB330HT: 2, 3, 5, 7, 23 (where applicable), 28, 29, 30

Seal Kits consist of items

15, 16, 23 (where applicable), 28, 29, 30

# Parts Legend

### **Gas Side**

- Shell
- 2 Bladder
- 3 Gas Valve Core
- Gas Side Lock Nut
- 5 Valve Seal Cap
- 6 Valve Protection Cap
- O-ring

- Name Plate 8
- 22 Gas Port Adapter
- 24 Anti-extrusion Ring
- 28 Flat Ring
- 29 O-ring
- 30 Back-up Ring
- Gas Port Lock Nut

### Fluid Side

- Fluid Port
- Anti-extrusion Ring
- 15 Flat Ring
- O-ring
- 17 Spacer Ring
- Fluid Port Lock Nut
- 19 Vent Screw
- Seal Ring
- Back-up Ring

# HYDAC Seal Kits & Spare Parts

# Seal Kits

For seal kits and repair kits other than Buna N, and for sizes not listed please consult factory.

# Bottom Repairable - Buna N\*

| Size          | 300                 | 0 PSI              | 5000 PSI            |                    |  |
|---------------|---------------------|--------------------|---------------------|--------------------|--|
| Size          | Fluid Port Seal Kit | Bladder Repair Kit | Fluid Port Seal Kit | Bladder Repair Kit |  |
| 1 (1 qt.)     | 02054031            | 02054034           | 02054032            | 02054455           |  |
| 4 (1 gal.)    | 02054032            | 02054035           | 02054032            | 02054035           |  |
| 6 (1.5gal.)   | 02054032            | 02054677           | N/A                 | N/A                |  |
| 10 (2.5 gal.) | 02054033            | 02054036           | 02054283            | 02054279           |  |
| 20 (5 gal.)   | 02054033            | 02054037           | 02054283            | 02054280           |  |
| 32 (10 gal.)  | 02054033            | 02054038           | 02054283            | 02054281           |  |
| 42 (11 gal.)  | 02054033            | 02075963           | N/A                 | N/A                |  |
| 54 (15 gal.)  | 02054033            | 02054039           | 02054283            | 02054282           |  |

<sup>\*</sup>For seal kits and repair kits other than Buna N, and for sizes and types not listed please contact HYDAC.

## **Tools**

| Item                         | Part Number |
|------------------------------|-------------|
| Pull Rod                     | 00172054    |
| Gas Valve Torque Wrench      | 02080987    |
| Gas Valve Core Tool          | 00616886    |
| Spanner Wrenches:            |             |
| 1 Qt                         | 02054547    |
| 1-15 Gal -                   | 02054545    |
| High Flow and Top Repairable | 02054548    |







Pull Rod: comes complete with fittings for both HYDAC gas valve types, and 3 extension segements to accomodate accumulators up to 54 liter





**Spanner Wrench** 



**WARNING:** Only qualified persons should perform maintenance on any type of accumulator. Complete maintenance instructions are available - Contact HYDAC.

# Seal Kits & Spare Parts HYDAC

# **Competitive Crossover**

# Bladder Accumulators





| Size    | HYDAC    | Accum Inc. | Bosch          | Greer  | Oil Air   | Parker      |
|---------|----------|------------|----------------|--------|-----------|-------------|
| 1 qt    | 02054003 | A1QT31003  | 0-531-112-640  | 851550 | 1QT-100-6 | BA002B3T1A1 |
| 1 gal   | 02054004 | A131003    | 0-531-113-640  | 841720 | 1-100-6   | BA01B3T1A1  |
| 2.5 gal | 02054005 | A2.531003  | 0-531-114-640  | 849760 | 2.5-100-6 | BA02B3T1A1  |
| 5 gal   | 02054006 | A531003    | 0-531-115-640  | 849392 | 5-100-6   | BA05B3T1A1  |
| 10 gal  | 02054007 | A1031003   | 0-531-115-650  | 850670 | 10-100-6  | BA10B3T1A1  |
| 15 gal  | 02054008 | A1531003   | 0-531-116-6401 | 849910 | 15-100-6  | BA15B3T1A1  |

Repair Kits<sup>10</sup> Replacement Bladder

| Size                   | HYDAC                        | Accum Inc.  | Bosch <sup>2</sup> | Greer   | Oil Air    | Parker      |
|------------------------|------------------------------|-------------|--------------------|---------|------------|-------------|
| 1 qt<br>5/8" Gas Valve | 02054655                     | AI-1QT-3KT3 | N/A                | 7029283 | A1QT-3003  | 08506930023 |
| 1 qt<br>7/8" Gas Valve | 02054034<br>(HYDAC standard) | AI-1QT-3KT  | 9-534-232-0243     | 702928  | A1QT-300   | N/A         |
| 1 gal                  | 02054035                     | AI-1-3KT    | 9-534-232-025      | 702956  | A1-300     | 0850693010  |
| 2.5 gal                | 02054036                     | AI-2.5-3KT  | 9-534-232-026      | 702970  | A2.5-2-300 | 0850693025  |
| 5 gal                  | 02054037                     | AI-5-3KT    | 9-534-232-027      | 702984  | A5-2-300   | 0850693050  |
| 10 gal                 | 02054038                     | AI-10-3KT   | 9-534-232-028      | 702998  | A10-2-300  | 0850693100  |
| 15 gal                 | 02054039                     | AI-15-3KT   | 9-534-232-0291     | 703026  | A15-2-300  | 0850693150  |



Top Repairable 3000 PSI / Oil Service / Buna N / SAE Thread

| Size   | HYDAC    | Accum Inc. | Bosch⁵         | Greer  | Oil Air     | Parker     |
|--------|----------|------------|----------------|--------|-------------|------------|
| 5 gal  | 02054000 | A5TR31003  | 9-530-230-085  | 851430 | TR-5-100-6  | BA05T3T1A1 |
| 10 gal | 02054001 | A10TR31003 | 9-530-230-095  | 851590 | TR-10-100-6 | BA10T3T1A1 |
| 15 gal | 02054002 | A15TR31003 | 9-530-230-1051 | 852480 | TR-15-100-6 | BA15T3T1A1 |

Repair Kits<sup>10</sup> Replacement Bladder

| Size    | HYDAC    | Accum Inc.⁴ | Bosch <sup>2, 4</sup> | Greer  | Oil Air    | Parker     |
|---------|----------|-------------|-----------------------|--------|------------|------------|
| 2.5 gal | 02054036 | AI-2.5-3KT  | N/A                   | 702970 | A2.5-2-300 | 0850693025 |
| 5 gal   | 02054104 | AI-5-3KT    | 9-534-232-027         | 702984 | A5-2-300   | 0850693050 |
| 10 gal  | 02054105 | AI-10-3KT   | 9-534-232-028         | 702998 | A10-2-300  | 0850693100 |
| 15 gal  | 02054106 | AI-15-3KT   | 9-534-232-0291        | 703026 | A15-2-300  | 0850693150 |





| Size    | HYDAC    | Accum Inc.   | Bosch⁵ | Greer  | Oil Air       | Parker      |
|---------|----------|--------------|--------|--------|---------------|-------------|
| 1 qt    | 02054188 | N/A          | N/A    | 851120 | N/A           | N/A         |
| 1 gal   | 02054189 | N/A          | N/A    | 851130 | N/A           | BA01B5T01A1 |
| 2.5 gal | 02054276 | A2.5TR510036 | N/A    | 851150 | G-2.5-5-100-6 | BA02B5T01A1 |
| 5 gal   | 02054275 | A5TR510036   | N/A    | 855360 | G-5-5-100-6   | BA05B5T01A1 |
| 10 gal  | 02054277 | A10TR510036  | N/A    | 850680 | G-10-5-100-6  | BA10B5T01A1 |
| 15 gal  | 02054278 | A15TR510036  | N/A    | 855370 | G-15-5-100-6  | BA15B5T01A1 |

Renair Kits<sup>10</sup> Replacement Bladder

| 110 San 1110 Hopiacoment Bladdel |                       |              |                       |        |              |             |
|----------------------------------|-----------------------|--------------|-----------------------|--------|--------------|-------------|
| Size                             | HYDAC                 | Accum Inc.9  | Bosch <sup>2, 4</sup> | Greer  | Oil Air      | Parker      |
| 1 qt                             | 02054455 <sup>7</sup> | N/A          | N/A                   | 704040 | N/A          | N/A         |
| 1 gal                            | 02054035 <sup>7</sup> | N/A          | N/A                   | 704060 | N/A          | N/A         |
| 2.5 gal                          | 02054279 <sup>8</sup> | AI-2.5-5-3KT | N/A                   | 704080 | AG-2.5-5-300 | 08619050258 |
| 5 gal                            | 02054280 <sup>8</sup> | AI-5-5-3KT   | N/A                   | 704100 | AG-5-5-300   | 08619050508 |
| 10 gal                           | 02054281 <sup>8</sup> | AI-10-5-3KT  | N/A                   | 704120 | AG-10-5-300  | 08619051008 |
| 15 gal                           | 020542828             | AI-15-5-3KT  | N/A                   | 704140 | AG-15-5-300  | 08619051508 |

### **Footnotes**

- Only 14 gallon
- Bladder only
- Size of gas valve stem may be different than HYDAC standard (7/8"-14 UNF)
- Style of gas valve stem (top-repairable) may differ (i.e. has flat) from HYDAC
- Not ASME approved; TUV approved accumulators only
- Top-repairable only

- Gas valve stem 7/8"-14 UNF
- Gas valve stem 2"
- Size and/or style of gas valve may be different than HYDAC standard
- 10 HYDAC Repair Kit consists of:
  - Bladder • Gas Valve Core • Lock Nut (SB 600 only)
- Valve Seal Cap
- Seal Kit

# HYDAC Seal Kits & Spare Parts

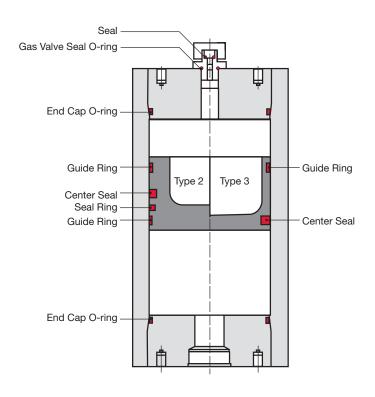
# **Piston Accumulators**

# Seal Kits & Replacement Pistons

For seal kits other than Buna N, and for sizes not listed please consult factory.

Example: SK 350 - 20 / **2**112 S - 210 FCF - VE - **18** E - 1 (see page 15 for details)

**Piston Type** 


### Diameter

### Piston Seal Kits

| Diameter    | Type 2 (NBR) | Type 3 (PUR) |
|-------------|--------------|--------------|
| 06 (60mm)   | _            | 03016210     |
| 08 (80mm)   | 02123890     | 03013230     |
| 10 (100 mm) | 00363268     | 02123414     |
| 12 (125 mm) | _            | 02128104     |
| 15 (150 mm) | 03016235     | 03145418     |
| 18 (180 mm) | 00363270     | 02123415     |
| 25 (250 mm) | 00363266     | 03016213     |
| 31 (310 mm) | 02127308     | _            |
| 35 (355 mm) | 00363272     | _            |

# Replacement Pistons - w/ Seals

| replacement i istoris Wi occis |              |              |  |  |  |
|--------------------------------|--------------|--------------|--|--|--|
| Diameter                       | Type 2 (NBR) | Type 3 (PUR) |  |  |  |
| 06 (60mm)                      | _            | 03009372     |  |  |  |
| 08 (80mm)                      | 00352225     | 02119931     |  |  |  |
| 10 (100 mm)                    | 00356847     | 02115547     |  |  |  |
| 12 (125 mm)                    | 03016232     | 03016150     |  |  |  |
| 15 (150 mm)                    | 03016228     | 03016231     |  |  |  |
| 18 (180 mm)                    | 02118451     | 02121568     |  |  |  |
| 25 (250 mm)                    | 00353980     | 03016171     |  |  |  |
| 31 (310 mm)                    | 03004987     | _            |  |  |  |
| 35 (355 mm)                    | 00356382     | _            |  |  |  |



### **Tools**

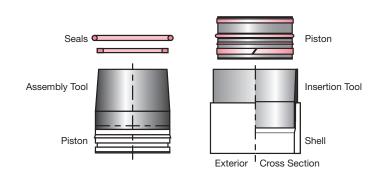
When repairing a piston accumulator, it is critical to use the appropriate tools to avoid seal damage.

There are two tools required:

## Seal Assembly Tool:

allows for gradual and even stretching of the seals when installing them onto the piston

### **Piston Insertion Tool:**


a tapered shroud that protects the seals from the threaded portion of the shell, and provides even seal compression and piston alignment when inserting the piston into the shell.

### Tools

| Diameter    | Seal Assembly | Piston Insertion |
|-------------|---------------|------------------|
| 08 (80 mm)  | 00359537      | 00359614         |
| 10 (100 mm) | 00352198      | 00290056         |
| 12 (125mm)  | 03016278      | 02128223         |
| 15 (150 mm) | 02124157      | 02124161         |
| 18 (180 mm) | 00350148      | 00290049         |
| 25 (250 mm) | 00290035      | 00290046         |
| 31 (310 mm) | 02127304      | 02127305         |
| 35 (355 mm) | 00354147      | 00290985         |

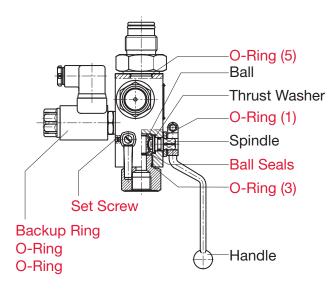
For items not listed please contact HYDAC.

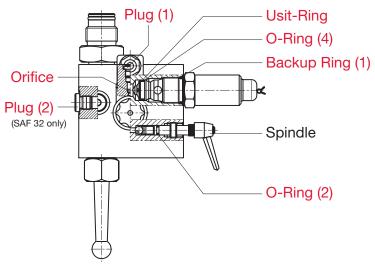
**WARNING:** Only qualified persons should perform maintenance on any type of accumulator. Complete maintenance instructions are available - Contact HYDAC.



# Seal Kits & Spare Parts HYDAC

# Safety & Shut-off Blocks


# Seal Kits, Repair Kits, Spare Parts


# Repair Kits

| Series | Part Number    |
|--------|----------------|
| SAF 10 | 03154715 (FPM) |
| SAF 20 | 03154716 (FPM) |
| SAF 32 | 03154717 (FPM) |

# Seal Kit (includes parts marked in red)

| Series | Part Number    |
|--------|----------------|
| SAF 10 | 03154712 (FPM) |
| SAF 20 | 03154713 (FPM) |
| SAF 32 | 03154714 (FPM) |





# **Dimensions for Spare Parts**

| Item            | SAF 10          | SAF 20          | SAF 32          |
|-----------------|-----------------|-----------------|-----------------|
| O-Ring (1)      | 10 x 2          | 15 x 2.5        | 20 x 3          |
| O-Ring (2)      | 6 x 2           | 6 x 2           | 6 x 2           |
| O-Ring (3)      | 21 x 2          | 34 x 2.5        | 53 x 2.5        |
| O-Ring (4)      | 18 x 2          | 18 x 2          | 18 x 2          |
| O-Ring (5)      | 29.7 x 2.8      | 29.7 x 2.8      | 37.2 x 3        |
| Usit-ring       | 18.3 x 21.5 x 1 | 18.3 x 21.5 x 1 | 18.3 x 21.5 x 1 |
| Backup Ring (1) | 23.47 x 2.62    | 23.47 x 2.62    | 23.47 x 2.62    |
| Plug (1)        | 7/16-20UNF      | 3/4-16UNF       | 3/4-16UNF       |
| Plug (2)        | N/A             | N/A             | G1/8            |

O-ring dimensions are in mm

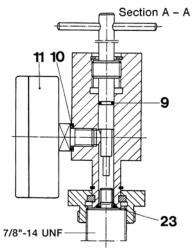
# Solenoid

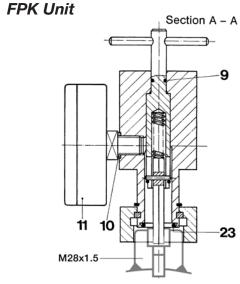
| 2-way solenoid operated bleed valve (without coil) | Old 2SV5 | New WSM  |
|----------------------------------------------------|----------|----------|
| Normally Open (for SAFE16Y)                        | N/A      | 03055295 |
| Normally Closed (for SAFE16Z)                      | N/A      | 03055276 |

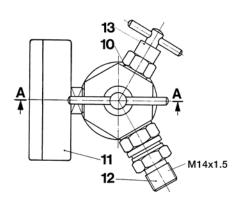
| Coil Kit for 2-way solenoid operated bleed valve | Old 2SV5 | New WSM  |
|--------------------------------------------------|----------|----------|
| 24 V DC                                          | 00715003 | 02083644 |
| 110 V AC                                         | 00715033 | 02083645 |

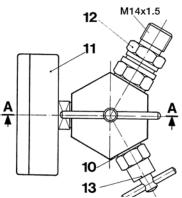
Note: 2SV5 coils and WSM coils are not interchangeable.

When replacing a 2SV5 with a WSM you must also replace the coil with the WSM design.


# Manual Bleed Valve


Consists of Spindle, Handle, Ball, O-Ring, and Set Screw Part No. 02115649 (FPM)


# HYDAC Seal Kits & Spare Parts


# **Charging & Gauging Units**

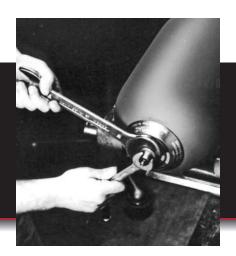
Spare Parts FPS Unit










| Item | Description                  | Part No.         |
|------|------------------------------|------------------|
| 9    | O-Ring                       | 00601032         |
| 10   | Seal-Ring                    | 00601228         |
| 11   | Gauge (select pressu         | ıre range below) |
|      | 10 (0 to 145 psi)            | 00606759         |
|      | 25 (0 to 350 psi)            | 00606760         |
|      | 100 (0 to 1400 psi)          | 00606761         |
|      | 250 (0 to 3500 psi)          | 00606762         |
|      | 400 (0 to 5800 psi)          | 00606763         |
| 12   | Check Valve                  | 00610004         |
| 13   | Manual Bleed Valve           | 00236445         |
| 23   | O-Ring - FPS                 | 00626488         |
| 23   | O-Ring - FPK                 | 00601049         |
| -    | 2.5m Hose                    | 00236514         |
| -    | 4m Hose                      | 00236515         |
| -    | 10m Hose                     | 00373405         |
| -    | ADAPTER G4                   | 02068737         |
| -    | ADAPTER A3 (FPK/SB)          | 00291533         |
| -    | O-Ring - ADAPTER A3 (FPK/SB) | 00601964         |

**WARNING:** Only qualified persons should perform maintenance on any type of accumulator. Complete maintenance instructions are available - Contact HYDAC.



# Innovative Solutions





# Accumulators SB 330 / 600 **Bladder Accumulators**

Service and Parts

### Index

General

### **Bottom Repairable Bladder Accumulators**

- Spare Parts List
- 2.1 Torque Requirements
- Maintenance Instructions
- 3.1 Disassembly
- 3.2 Inspection Of Components
- 3.3 Assembly

### **Top Repairable Bladder Accumulators**

- Spare Parts List
- **Torque Requirements**
- Maintenance Instructions
- Disassembly
- 5.2 Inspection Of Components
- 5.3 Assembly

### **WARNING!**

Hydraulic accumulators are pressurized vessels and only qualified technicians should perform repairs. Never weld, braze or perform any type of mechanical work on the accumulator shell. Always drain the fluid completely from the accumulator before performing any work, such as recommended repairs or connecting pressure gauges.

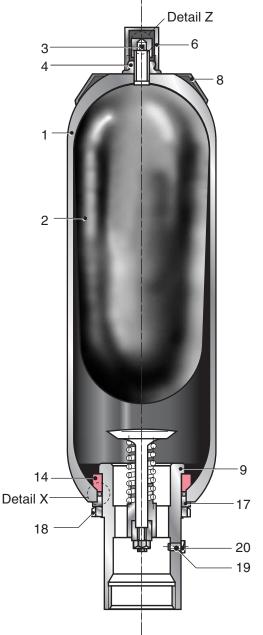
### **Special Tools Required:**

- 1. HYDAC Charging and Gauging Unit:
- For bottom repairable bladder accumulators: FPS or FPK with adapter FPK/SB may be used.
- For top repairable bladder accumulators only the FPK with adapter FPK/SB may be used.
- 2. Gas Valve Core Tool
- 3. Spanner Wrench(es)
- 4. Bladder Pull Rod
- 5. Sockets 27mm / 32mm (top repairable only) / 36 mm
- 6. Blunt Flathead Screwdriver (with rounded edges)

NOTE: Additional standard tools are required including but not limited to: Soft Faced Hammer / Sockets / Torque Wrenches

Refer to additional information contained in the "Operating and Installation Instructions for HYDAC Accumulators" as well as Accumulator Catalog #02068195.

The instructions included in this brochure cover Bottom Repairable and Top Repairable Bladder Accumulators.


Before servicing a bladder accumulator obtain the appropriate HYDAC repair kit. Use only original HYDAC replacement parts.

Read all instructions thoroughly before beginning any type of service or repair work.



# **HYDAD** Maintenance

# 2. Replacement Parts Drawing: SB330, SB330H, SB330N, SB600N



Detail Z

# Detail X SB 330: size 1 to 54 SB 600: size 1 to 4 SB 330N: size 1 to 54



# Item Description:

- 1 Shell
- 2 Bladder
- 3 Gas Valve Core
- 4 Bladder Stem Lock Nut
- 5 Valve Seal Cap
- 6 Valve Protection Cap
- 7 O-ring
- 8 Name Plate
- 9 Fluid Port
- 14 Anti-extrusion Ring
- 15 Flat Ring
- 16 O-ring
- 17 Spacer Ring
- 18 Fluid Port Lock Nut
- 19 Fluid Port Vent Screw
- 20 Seal Ring
- 23 Back-up Ring

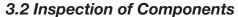
### Repair Kit Consists Of:

- 2 Bladder
- 3 Gas Valve Core
- 4 Fluid Port Lock Nut (SB 600 only)
- 5 Valve Seal Cap
- 7 O-Ring
- 15 Flat Ring
- 16 O-Ring
- 23 Back-up Ring (where applicable)

# 2.1 Torque Requirements:

Bottom Repairable Bladder Accumulators in Nm (lb-ft)

| Part Name                | SB 330    |           |           | SB 330 H  | SB 600    |           |
|--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
|                          | 1         | 4 to 6    | 10 to 54  | 10 to 20  | 1 to 4    | 10 to 54  |
| Gas Valve Core           | 0.5 (0.4) | 0.5 (0.4) | 0.5 (0.4) | 0.5 (0.4) | 0.5 (0.4) | 0.5 (0.4) |
| Bladder Stem Lock Nut    | 80 (59)   | 80 (59)   | 80 (59)   | 80 (59)   | 80 (59)   | 150 (111) |
| Valve Seal Cap           | 30 (22)   | 30 (22)   | 30 (22)   | 30 (22)   | 30 (22)   | 30 (22)   |
| Fluid Port Lock Nut      | 90 (66)   | 200 (148) | 440 (325) | 600 (443) | 200 (148) | 440 (325) |
| Vent Screw <sup>1)</sup> | 4 (3)     | 22 (16)   | 30 (22)   | 30 (22)   | 22 (16)   | 30 (22)   |


1) For SAE threads only. For other thread types, consult HYDAC.



# 3. Bottom Repairable Bladder Accumulators

# 3.1 Disassembly

- A After removal from the system, place the accumulator in a vice or secure it to a workbench. Remove valve protection cap (item 6) and unscrew valve seal cap (item 5). Attach the proper HYDAC Charging and Gauging Unit and completely relieve the gas precharge (refer to HYDAC Charging and Gauging brochure #02068202).
  - Remove gas valve core (item 3) by using the gas valve core tool.
- B Unscrew vent screw (item 19) and remove seal ring (item 20).
  - Unscrew **lock nut** (*item 18*) by using spanner wrench. Remove **spacer ring** (*item 17*). If necessary, tap spacer ring with a plastic hammer to loosen.
- C Loosen fluid port (item 9) and push it into the shell. Remove back-up ring, (item 23) where applicable, O-ring (item 16) and flat ring (item 15) from fluid port.
- **D** Pull **anti-extrusion ring** (*item 14*) off fluid port and remove it through fluid side opening by folding it in half.
- E Remove fluid port (item 9).
- F Remove bladder stem lock nut (item 4) and name plate (item 8) from the gas side. Remove bladder (item 2) from fluid side. It may be necessary to fold the bladder lengthwise to remove it.



### Shall.

- inside to ensure it is free of debris, rough spots, or chafe marks.
- fluid side bore for damage which could hamper proper sealing.
- · exterior for any sign of damage.

If any interior or exterior damage is found, contact HYDAC for proper repair or replacement instructions.

### Bladder

The bladder must be checked for leakage. Reinstall gas valve core (item 3) and charge the bladder with nitrogen or compressed air to its natural shape and inspect for leakage.

If leakage occurs, first check the gas valve core (*item 3*) and replace it if necessary. If leakage still occurs, then the bladder must be replaced. The bladder must be visually inspected for lateral grooves and deep chafe marks. If any are found, the bladder should be replaced. Shallow chafe marks are insignificant and will not hamper performance.

Note: Bladders can not be repaired or revulcanized!

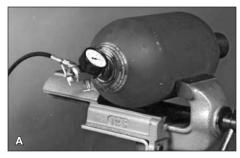
### Fluid Port:

Depress poppet and rotate  $90^\circ$  to ensure free movement. Visually inspect poppet, threads, and sealing surfaces for any damage. If any damage is found, the fluid port should be replaced.

### **Vulcanized Anti-extrusion Ring:**

Visually check vulcanized area between steel and rubber to make sure it is undamaged and that adhesion is still good (no gaps between rubber and metal). If the adhesion is poor or the rubber is cracked or shows signs of embrittlement or aging, replace anti-extrusion ring. Also check the seat area on the steel parts for grooves or any other damage. If any are found replace anti-extrusion ring.

# Non-Vulcanized Anti-extrusion Ring:


Visually inspect area between the steel and rubber to make sure that the steel ring is properly seated. If the rubber is cracked or shows signs of embrittlement or aging, replace anti-extrusion ring. Also check the seat area on the steel parts for grooves or any other damage. If any are found replace anti-extrusion ring.

### Seals:

New seals should always be used whenever reassembling any bladder accumulator.

### **Other Parts:**

Inspect for damage and replace if necessary.













# **HYDAD** Maintenance

# 3.3 Assembly:

The interior of the shell must be absolutely free of any contamination or debris prior to assembly.

Prepare bladder for installation by removing **valve seal cap** (item 5), and **gas valve core** (item 3). Press all residual air out of bladder.

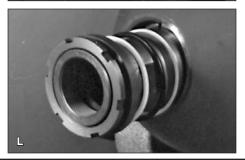
- **G** Lubricate interior of shell and exterior of bladder with appropriate filtered fluid, using a fluid volume of approximately 10% of total accumulator volume.

  (Do not use water, it is not a lubricant).
  - Different bladder compounds require different lubricants.
- **H** Place **bladder stem lock nut** (*item 4*) over the pull rod with the male threads facing the pull rod handle. Insert bladder pull rod through shell (*threaded connection toward fluid side opening*).

Thread pull rod onto gas valve. Fold bladder in half lengthwise, then again if necessary. Pull the pull rod until gas valve emerges through gas port opening. Make sure bladder is stretched and not twisted when being inserted. Once gas valve is through opening, loosely attach **bladder stem lock nut** (item 4) to prevent bladder from slipping back into shell. Remove pull rod from gas valve.

- Insert gas valve core (item 3) and torque to 0.5 Nm (0.4 lb-ft).
- I To prevent damage to the threads and O-ring, tape fluid port threads before assembly. Insert fluid port into shell. Make sure bladder is fully extended within the shell.
- J Fold **anti-extrusion ring** (*item 14*) in half and insert into shell with steel seat facing fluid side opening. To do this, push fluid port further into shell and then pull it back through the middle of the anti-extrusion ring.
- K Slightly pull on the fluid port to position it. Do not allow fluid port to fall back into shell. This can be accomplished by either pulling on the fluid port while inserting seals or precharging the bladder with 10 to 15 psi of dry nitrogen to keep fluid port in position (refer to HYDAC Charging and Gauging brochure #02068202).
- L Order of Assembly:

| item 15 |
|---------|
| item 16 |
| item 23 |
| item 17 |
| item 18 |
|         |











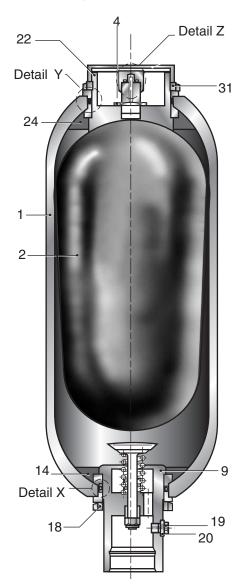




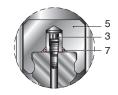

- M Insert flat ring (item 15) into space between fluid port and shell. If it does not slide on properly, recenter fluid port in opening. Next, insert O-ring by pressing with a blunt flathead screwdriver (with rounded edges) at 90° intervals. Carefully, level O-ring onto seat. Where applicable insert back-up ring (item 23) over O-ring with grooved surface toward O-ring.
- N Remove protective tape from fluid port threads. Insert spacer ring (item 17) with "lip" placed in the shell. Thread on fluid port lock nut (item 18) and torque with spanner wrench\*. Place seal ring (item 20) on vent screw (item 19) install in fluid port and torque\*.
- On gas side, remove loosely attached **bladder stem lock nut** (item 4) and position **name plate** (item 8). Reapply **bladder stem lock nut** (item 4) and torque\*.
- P Attach appropriate HYDAC Charging and Gauging Unit and apply proper gas precharge (refer to HYDAC Charging and Gauging brochure #02068202). Check bladder stem lock nut (item 4) torque\*.
- Q Screw on valve seal cap (item 5) and torque<sup>2</sup>. Replace valve protection cap (item 6).
  \*refer to torque table in section 2.1



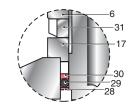




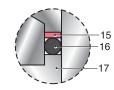


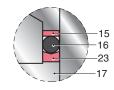

## **HYDAD** Maintenance


#### 4. Replacement Parts Drawing: SB330T, SB330HT, SB330TR, SB330NTR, SB 600T, SB600TR, SB600NTR




#### Detail Z




# Detail Y SB330T: size 10 to 54 SB330HT: size 20 to 54 SB330NTR: size 10 to 54 SB330NTR: size 10 to 54 SB600T: size 20 to 54 SB600NTR: size 20 to 54 SB600NTR: size 20 to 54 SB600NTR: size 20 to 54



**Detail X**SB330T: size 10 to 54
SB330TR: size 10 to 54



SB330NTR: size 10 to 54 SB330HT: size 20 to 54 SB600T: size 20 to 54 SB600TR: size 20 to 54 SB600NTR: size 20 to 54



## 4.1 Torque Requirements:

Top Repairable Bladder Accumulators in Nm (lb-ft)

| Part Name                | SB 330 H<br>20 to 54 | SB 330 T<br>10 to 54 | SB 330 TR<br>10 to 54 | SB 600 T<br>20 to 54 | SB 600 TR<br>20 to 54 |
|--------------------------|----------------------|----------------------|-----------------------|----------------------|-----------------------|
| Gas Valve Core           | 0.5 (0.4)            | 0.5 (0.4)            | 0.5 (0.4)             | 0.5 (0.4)            | 0.5 (0.4)             |
| Bladder Stem<br>Lock Nut | 80 (59)              | 80 (59)              | 80 (59)               | 80 (59)              | 80 (59)               |
| Valve Seal Cap           | 30 (22)              | 30 (22)              | 30 (22)               | 30 (22)              | 30 (22)               |
| Fluid Port Lock Nut      | 600 (443)            | 440 (325)            | 440 (325)             | 440 (325)            | 440 (325)             |
| Vent Screw <sup>3)</sup> | 30 (22)              | 30 (22)              | 30 (22)               | 30 (22)              | 30 (22)               |
| Gas Port Lock Nut        | 600 (443)            | 600 (443)            | 440 (325)             | 440 (325)            | 30 (22)               |

3) For SAE threads only. For other thread types, consult HYDAC.

#### Item Description:

- 1 Shell
- 2 Bladder
- 3 Gas Valve Core
- 4 Bladder Stem Lock Nut
- 5 Valve Seal Cap
- 6 Valve Protection Cap
- 7 O-ring

#### Fluid Side

- 9 Fluid Port
- 14 Anti-extrusion Ring
- 15 Flat Ring
- 16 O-ring
- 17 Spacer Ring
- 18 Fluid Port Lock Nut
- 19 Vent Screw
- 20 Seal Ring
- 23 Back-up Ring

#### **Gas Side**

- 22 Gas Port Adapter
- 24 Anti-extrusion Ring
- 28 Flat Ring
- 29 O-ring
- 30 Back-up Ring
- 31 Gas Port Lock Nut

## SB330T, SB330TR, SB330NTR, SB600T, SB600TR, SB600NTR Repair Kit consists of:

- 2 Bladder
- 3 Gas Valve Core
- 5 Valve Seal Cap
- 7 O-ring
- 15 Flat Ring
- 16 O-ring
- 23 Back-up Ring (where applicable)
- 28 Flat Ring
- 29 O-ring
- 30 Back-up Ring

#### SB330HT Repair Kit consists of:

- 2 Bladder
- 3 Gas Valve Core
- 5 Valve Seal Cap
- 7 O-ring
- 23 Back-up Ring (where applicable)
- 28 Flat Ring
- 29 O-ring
- 30 Back-up Ring



#### 5. Top Repairable Bladder Accumulators

Top repairable accumulators may also be repaired from the bottom (fluid) side. For this procedure please see section 3.

#### 5.1 Disassembly

A Relieve system fluid pressure and drain all fluid from accumulator.

Remove **valve protection cap** (*item 6*) (*if applicable*) and unscrew **valve seal cap** (item 5). Attach proper HYDAC Charging and Gauging Unit (*FPK with adapter FPK/SB*) and completely relieve the gas precharge pressure (*refer to HYDAC Charging and Gauging brochure #02068202*).

- **B** Remove gas valve core (*item* 3) by using the gas valve core tool. Thread pull rod onto gas valve and hold to keep gas port from falling into shell.
- C Unscrew gas port lock nut (item 31) using spanner wrench. Remove spacer ring (item 17). If necessary, tap spacer ring with a plastic hammer to loosen. Push gas port adapter into shell.
- D Remove back-up ring (item 30), O-ring (item 29), and flat ring (item 28) before removing anti-extrusion ring. Remove anti-extrusion ring (item 24) from gas port adapter, then fold it in half to pull it through the gas side opening.
- **E** Pull gas port adapter through gas side opening and grasp the gas port adapter with one hand, while removing the pull rod with the other.

Remove the **gas port/bladder assembly** (item 22 and 2) from the shell. It may be necessary to fold the bladder lengthwise to remove it.

F Remove bladder stem lock nut (item 4) from gas valve and separate gas port adapter (item 22) from bladder (item 2).

#### 5.2 Inspection of Components

#### Shell:

- inside to ensure it is free of debris, rough spots, or chafe marks.
- · fluid side and gas side bores for damage which could hamper proper sealing.
- exterior for any sign of damage.

If any interior or exterior damage is found, contact HYDAC for proper repair or replacement instructions.

#### Bladder:

The bladder must be checked for leakage. Reinstall gas valve core (*item 3*) and charge the bladder with nitrogen or compressed air to its natural shape and inspect for leakage.

If leakage occurs, first check the gas valve core (item 3) and replace it if necessary. If leakage still occurs, then the bladder must be replaced. The bladder must be visually inspected for lateral grooves and deep chafe marks. If any are found, the bladder should be replaced. Shallow chafe marks are insignificant and will not hamper performance.

Note: Bladders can not be repaired or revulcanized.

#### Fluid Port

Depress poppet and rotate 90° to ensure free movement. Visually inspect poppet, threads, and sealing surfaces for any damage. If any damage is found, the fluid port should be replaced.

#### Vulcanized Anti-extrusion Ring:

Visually check vulcanized area between steel and rubber to make sure it is undamaged and that adhesion is still good (no gaps between rubber and metal). If the adhesion is poor or the rubber is cracked or shows signs of embrittlement or aging, replace anti-extrusion ring. Also check the seat area on the steel parts for grooves or any other damage. If any are found replace anti-extrusion ring.

#### Non-Vulcanized Anti-extrusion Ring:

Visually inspect area between the steel and rubber to make sure that the steel ring is properly seated. If the rubber is cracked or shows signs of embrittlement or aging, replace antiextrusion ring. Also check the seat area on the steel parts for grooves or any other damage. If any are found replace antiextrusion ring.

#### Gas Porter Adapter:

Visually inspect the thresads and sealing surfaces of the gas port adapter for signs of damage. If any damage is found, the gas port adapter should be repaced.

#### Seals:

New seals should always be used whenever reassembling any bladder accumulator.

#### Other Parts:

Inspect for damage and replace if necessary.













## **HYDAD** Bladder Maintenance

#### 5.3 Assembly

The interior of the shell must be absolutely free of any contamination or debris prior to assembly.

Prepare bladder for installation by removing **valve seal cap** (*item 5*), and **gas valve core** (*item 3*). Purge all residual air.

Lubricate interior of shell and exterior of bladder with appropriate filtered fluid, using a fluid volume of approximately 10% of total accumulator volume. (Do not use water, it is not a lubricant).

Different bladder compounds require different lubricants.

- **G** Attach **gas port adapter** (item 22) to bladder with gas valve protruding through adapter opening. Loosely screw **bladder stem lock nut** (item 4) onto gas valve to keep gas port and bladder connected.
- **H** Fold **bladder** (*item 2*) in half lengthwise and insert through gas side opening. Make sure bladder is stretched and not twisted when being inserted. Thread pull rod onto gas valve to position gas port adapter.
- I Place the anti-extrusion ring (item 24) over the pull rod with the steel parts facing upward. Fold anti-extrusion ring (item 24) in half and insert into shell. To do this, push gas port adapter further into shell and then pull it back through anti-extrusion ring. Slide gas port lock nut (item 31) over and pull rod with beveled surface facing away from shell; loosely thread the gas port lock nut onto the gas port adapter. Remove pull rod from gas valve.
- J Insert gas valve core (item 3) and torque to 0.5 Nm (0.4 lb-ft). Precharge bladder with 10 to 15 psi of dry nitrogen to hold gas port adapter (item 22) in place while completing assembly.
- K Remove gas port lock nut (item 31). Insert flat ring (item 28) into space between gas port and shell. If it does not slide on properly, re-center gas port in opening. Next, insert O-ring (item 29) by pressing with a blunt flathead screwdriver (with rounded edges) at 90° intervals. Carefully, level O-ring onto seat. Insert back-up ring (item 30) over O-ring with grooved surface toward O-ring.
- L Install spacer ring (item 17). Thread on gas port lock nut (item 31) with beveled surface facing away from shell and torque with spanner wrench\*. Torque\* bladder stem lock nut (item 4).
- **M** Attach HYDAC Charging and Gauging Unit (FPK with adapter FPK/SB) and apply proper gas precharge pressure (refer to HYDAC Charging and Gauging brochure #02068202). Check **bladder stem lock nut** (item 4) torque<sup>2</sup>).
- N Screw on valve seal cap (item 5) and torque\*. Replace valve protection cap (item 6) (if applicable).

\*refer to torque table in section 4.1.

















© Copyright 2000, 2007 HYDAC TECHNOLOGY CORPORATION Accumulator Division • Brochure - Service Bladder Accumulators / 7.08







# Accumulators SK 210 / 350 Piston Accumulators

Service and Parts

#### Index

- 1. Description
- 2. Delivery Inspection
- 3. Installation and Mounting
- 4. Connection
- 5. Commissioning and Precautions
- 6. Inspection and Maintenance
- 7. Storage and Preservation
- 8. Disassembly, Inspection and Assembly
- 9. Special Tools and Spare Parts

#### 1. Description

These Operating and Maintenance Instructions apply to HYDAC piston accumulators of the series SK210 and SK350 having the following specifications:

permiss. operating pressure: 210 / 350 bar

permiss. operating temperature: -10 / 80°C with NBR seal

max. pre-charge pressure  $p_0$ :  $p_{0,tmax} \le p1 - 5$  bar

permiss. pressure ratio  $p_0$ :  $p_2 \le 1$ :  $\infty$ 

Design, Approval: PED/AD-Regulations, ASME

For volumes, dimensions and weights (when empty), see drawing or brochure.

#### 2. Delivery Inspection

Prior to delivery, HYDAC accumulators undergo a careful inspection. Upon receipt of the accumulator, check that:

- no damage has been sustained during transport. In particular, check the gas valve and the hydraulic connection for damage,
- the details shown on the model code correspond to the order details,
- the test certificates (if required) are present and correspond to the factory number of the accumulator,
- the protective cap of the gas valve is tightly closed,
- the hydraulic connection has been closed off with a protective plug.

## **HYDAD** Maintenance

#### 3. Installation and Mounting

#### 3.1. Mounting Position

The piston accumulators can be mounted in any position. However, the vertical mounting position with the gas valve at the top is generally preferred.

Sufficient clearance must be left to mount and disconnect the piston accumulator. In particular, an area of at least 150 x 150 x 150 mm must be left above the gas valve for fitting and operating the charging and gauging unit.

#### 3.2. Mounting

In accordance with the recommendations of the HYDAC brochure "Supports for Hydraulic Accumulators", HYDAC piston accumulators must be mounted vibration–free using clamps and base brackets.



**Note:** Mounting elements must never be welded to the piston accumulator.

#### 4. Connection

The connection of the accumulator to the system must be stress-free and torque-free.

It must be possible to isolate the accumulator from the pressurized hydraulic system.

#### 5. Commissioning and Safety Precautions

#### 5.1 Commissioning

Prior to connecting the accumulator to the pressurized system, the precharge pressure should be rechecked. If the accumulator was precharged at HYDAC the pressure level can be found on the label.

The level of the precharge pressure generally depends on the following criteria:

- · type of system,
- expected changes in operating temperature,
- intended function of the accumulator.

The following pre-charge pressures are recommended:

#### for energy storage:

 $p_{0,tmax} \le P1 - 5 bar$ 

 $p_{0,tmin} \ge 2 bar$ 

#### for volume compensation:

p<sub>0</sub> = static pressure of the system

Further information on the gas pre-charge pressures can be found in the HYDAC accumulator brochure "Piston Accumulators". Charging and gauging of the pre-charge pressure is described in Point 6 "Inspection and Maintenance".

#### 5.2. Venting

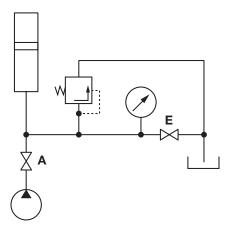
Prior to commissioning, the accumulator must be vented on the oil side. Then apply the maximum operating pressure to the complete hydraulic system and check for leakages.

#### 5.3. Safety Precautions



#### IMPORTANT!

Only use nitrogen to charge the accumulator, never oxygen or compressed air (risk of explosion).


If the pressure of the nitrogen bottle is higher than the permissible operating pressure of the accumulator, a pressure release valve or gas pressure valve must be fitted.

#### 6. Inspection and Maintenance

On the whole, nitrogen losses on piston accumulators are very low. However, it is advisable to check the pre-charge pressure p0 at least once during the first week following commissioning so that larger nitrogen losses can be detected immediately. Then in the course of the first two months check the pre-charge pressure every two weeks, and thereafter every four weeks. If after this period no pressure change is detected, an annual check of the nitrogen pressure will be sufficient.

## 6.1. Checking the Nitrogen Pressure without a Charging and Gauging Unit

In this case, as shown in the following drawing, a pressure gauge is connected to a line which is directly connected to the accumulator.

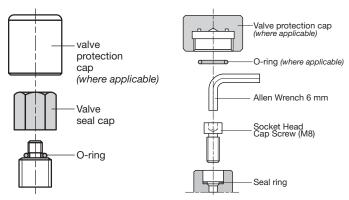


Isolate the fully-charged piston accumulator from the hydraulic system by closing the shut-off valve A. Slowly discharge the accumulator on the fluid side via drain valve E. The pressure gauge must be constantly monitored during this process. A slow, steady pressure drop is displayed. The pressure only drops abruptly when the accumulator has been completely discharged. The pressure displayed before the drop corresponds to the pre-charge pressure of the piston accumulator. If this pressure lies below the permissible value, the charging procedure must be carried out, as described in the following section.



## 6.2. Charging Procedure with the Charging and Gauging Unit

Using the charging and gauging units, hydraulic accumulators can be charged with nitrogen or tested to the pre-charge pressure P<sub>o</sub>.


First, isolate the piston accumulator from the hydraulic system by closing the shut-off valve A and discharge it on the fluid side. Then remove the valve seal cap of the piston accumulator.

On accumulators with gas valves version 1 the gas valve insert must first be unscrewed slightly (approx. 1/2 turn) using a 6mm allen wrench

The T-handle of the FPU-1 must not be used for this. Now the charging and gauging unit can be connected.

On accumulators with gas valve version 4, the valve seal cap must first be unscrewed. Only then can the charging and gauging unit and the nitrogen bottle be connected in accordance with the operating instructions (with adapter A3). Ensure that the pressure release valve of the charging and gauging unit is closed. Turn the spindle in a counter-clockwise direction to unscrew the internal. hex. screw of the gas valve. Then slowly open the valve of the nitrogen bottle so that the nitrogen is released into the accumulator. Wait until approximately 1 bar precharge pressure has been reached and the piston is at the fluid side before opening the shut-off valve of the nitrogen bottle further to enable faster charging.

#### Gas Valve Version 4 Gas Valve Version1



Interrupt the charging procedure from time to time and check the precharge pressure reached. When the required precharge pressure has been reached, close the shut-off valve of the nitrogen bottle. Wait for approx. five minutes while temperature equalization takes place (a longer period must be allowed for larger systems quantities), then recheck the precharge pressure and adjust if necessary. If the pressure is too high, it can be lowered via the pressure release valve of the charging and gauging unit.

Turn the spindle clockwise to securely tighten the internal. hex. screw. Then discharge the charging and gauging unit via the pressure release valve and remove it by loosening the cap nuts. On piston accumulators with gas valve version 1, the internal hex screw must be tightened to a torque rating of 20 Nm and with version 4 the valve seal cap must be tightened to a torque rating of 30 Nm. Finally check for leaks on the accumulator gas valve using a leak detector spray. Screw on valve protection cap.

Further details can be found in the HYDAC brochure "HYDAC Accumulator Catalog" and in the operating instructions for part number 02068202.

#### 6.3. Pressure Testing

For piston accumulators with a permissible operating pressure p greater than 1 bar and a pressure capacity  $p^*V > 1000$ , for non-corrosive fluids, a pressure test must be carried out by an approval authority every 10 years, otherwise every 5 years.

An internal inspection must be carried out every five years and an external inspection every two years.

#### 7. Storage and Preservation

If the period of storage until commissioning is no longer than three months, it is sufficient for the precharged accumulator to be stored in a cool, dry place, protected from direct sunlight, providing that the inside of the accumulator has first been coated with the intended hydraulic fluid. The accumulator can be stored in any position. To prevent contamination from entering the accumulator, ensure that the hydraulic connection is plugged.

If the accumulator is to be stored for longer than three months, check the required precharge pressure of the accumulator before commissioning.

If the accumulator has not been precharged, it must be plugged on the gas side and conserved with the intended operating fluid or another suitable conservation fluid.

## HYDAD Maintenance

#### 8. Disassembly, Inspection and Assembly

#### 8.1 Removal From System

- Carefully clean the area around the end caps on the gas and fluid side.
- On back-up type piston accumulators the nitrogen feed line must be isolated by means of the shut-off valve.
- Completely release the pressure on the fluid side of the accumulator. This causes the piston to move down to the end cap on the fluid side with the aid of the gas precharge pressure.
- Then connect the charging and gauging unit according to the operating instructions and section 6.2. and release the pressure slowly by opening the pressure release valve.
- Remove all non-pressurized lines on the gas and fluid side and remove the complete piston accumulator from the system.

#### 8.1.1 Disassembly

Further disassembly should be carried out in a suitable, clean area.

- Clamp piston accumulator to a work bench and remove the gas valve and all adapters and accessories.
- Unscrew end caps on the gas and fluid side. This can be achieved by using 2 bolts or threaded rods positioned opposite each other. On large end caps an extension rod can be used.
- If the end cap is in two parts, then the connection screws between the threaded ring and end cap must be loosened first. Unscrew the threaded ring by approximately 3 turns and screw in the connection screws again. This pulls the end cap out. Carry out this process several times until the end cap is completely free.
- Push the piston out of the accumulator in the direction of the fluid side (use suitable plastic or wooden rod and a rubber mallet).
   Both threaded bores in the piston can be used for this purpose as well.

#### 8.1.2 Testing and Cleaning

#### a) Cylindrical tube

Carefully clean the inside of the cylindrical tube (piston body) with a non-aggressive, non-abrasive cleaning agent and then dry with a lint-free cloth. Check the inside of the body for rough spots and grooves. If these are found, it is possible for HYDAC to re-machine the cylindrical tube within certain tolerances.

If any external or internal damage is found, the pressure vessel must be submitted to the manufacturer and, if applicable, the appropriate inspection authority for assessment.

#### b) End caps

Carefully clean the end caps and replace both O-rings.

#### c) Piston

Remove all seals and guide rings and clean the piston thoroughly.

#### 8.1.3 Assembly

#### a) Fitting the piston seals

Piston design type 2:

- Guide the mounting sleeve (see point 9 Special tools and spare parts) over the piston from the fluid side as far as the groove provided for the center seal (see part of center seal).
- Draw the elastomer ring over the sleeve into the groove provided.
  Then heat the center seal ring to 150°C to facilitate fitting and
  push it over the mounting sleeve into the designated position
  (shoulder towards the oil side). This process must be completed in
  10 to 15 seconds.
- Push the quadring into the recess of the seal ring (see figure).
- Withdraw the mounting sleeve as far the groove for the seal ring and fit elastomer O-ring. Then heat the seal ring to 150°C to facilitate fitting and press into the designated position over the mounting sleeve (shoulder towards the oil side). This process must be completed in 10 to 15 seconds.
- Fit guide rings both on the gas as well as the oil side with the ends displaced by 180°.

#### Piston design type 3:

- Fit elastomer O-ring into the designated groove and then draw the seal ring over it.
- Fit guide rings both on the gas as well as the oil side with the ends displaced by 180°.

#### b) Fitting the piston

- Lubricate the upper area of the cylinder wall and the guide ends
  of the piston with a suitable lubricating agent (filtered operating
  fluid). Do not use grease or water water is not a lubricant!
- Place mounting sleeve (see section 9 Special tools and spare parts) onto the cylindrical tube.
- With the hollow side towards the gas connection, insert the piston fully into the tube. A plastic or wooden rod or a rubber mallet can be used for this purpose.
- Grease both O-rings and the threads on the end caps.
- Screw both end caps, or end caps with threaded ring, into the cylindrical tube, if necessary with the aid of the two bolts and a rod, until they are level with the ends of the accumulator.
- If specified, the accumulator must be filled on the gas side with the designated quantity of oil.
- Fit the gas valve and all adapters and other accessories.
- Connect HYDAC charging and gauging unit and charge the accumulator according to the instructions (see section 6.2) with the required precharge pressure.
- On piston accumulators with the gas valve version 1, the internal. hex. screw must be tightened to a torque rating of 20 Nm and with version 4, the valve seal cap must be tightened to a torque rating of 30 Nm.
- Screw on valve protection cap.

#### c) Fitting the accumulator into the system

Reconnect the piston accumulator to the system and check for leaks according to section 6 - Inspection and Maintenance.



## 8.2. Piston Accumulator with Protruding Piston Rod

## 8.2.1 Disconnection, Disassembly, Testing and Cleaning

Disconnect the piston accumulator as described in section 8.1.

#### 8.2.2 Assembly

### a) Fitting the piston seals Fit the piston seals as described in point 8.1.4 a)

#### b) Assemble the piston accumulator

- · Fit piston rod into the piston base.
- Lubricate the upper part of the cylinder wall and the guide ends
  of the piston with a suitable lubricant (filtered operating fluid). Do
  not use grease or water water is not a lubricant!
- Place mounting sleeve (see section 9 Special tools and spare parts) onto the cylindrical tube.
- With the hollow side towards the gas connection, insert the piston fully into the tube. A plastic or wooden rod or a rubber mallet can be used for this purpose.
- · Grease both O-rings and the threads on the end caps.
- Screw in both end caps, or end caps with threaded ring, into the cylindrical tube, if necessary with the aid of the two bolts and a rod, until they are level with the ends of the accumulator.
- If specified, the accumulator must be filled on the gas side with the designated quantity of oil.
- · Fit the gas valve and all adapters and other accessories.
- Push the guide block, fitted with an O-ring, over the piston rod and screw it firmly to the end cap.
- · Fit the rubber packing seal kit in the groove provided.
- Place the sealing flange with the skimmer in position and screw on.
- Connect HYDAC Charging and Testing Unit FPU-1 and charge the accumulator according to the instructions (see section 6.2) with the required pre-charge pressure.
- On piston accumulators with the gas valve version 1, the internal. hex. screw must be tightened with a torque rating of 20 Nm and with version 4, the valve seal cap must be tightened with a torque rating of 30 Nm.
- Screw on valve protection cap.

#### c) Fitting the accumulator into the system

Re–connect the piston accumulator to the system and check for leaks according to section 6 - Inspection and Maintenance.

#### 8.3. Piston Accumulator with Electrical Limit Switch

For item numbers, see section 9.2.3.

## 8.3.1 Disconnection, Disassembly, Testing and Cleaning

Disconnect the piston accumulator as described in section 8.1.

#### 8.3.2 Assembly

#### a) Fitting the piston seals

Fit the piston seals as described in section 8.1.4 a)

#### b) Assemble the piston accumulator

- Lubricate the upper part of the cylinder wall and the guide ends
  of the piston with a suitable lubricant (filtered operating fluid). Do
  not use grease or water water is not a lubricant!
- Place mounting sleeve (see section 9 Special tools and spare parts) onto the cylindrical tube.
- With the hollow end towards the gas connection, insert the piston fully into the tube. A plastic or wooden rod or a rubber mallet can be used for this purpose.
- Grease both O-rings and the threads on the end caps.
- Fit the limit switch with the O-ring in place.
- Screw in both end caps, or end caps with threaded ring, into the cylindrical tube, if necessary with the aid of the two bolts and a rod, until they are level with the ends of the accumulator.
- If specified, the accumulator must be filled on the gas side with the designated quantity of oil.
- Fit the gas valve and all adapters and other accessories.
- Connect HYDAC Charging and Testing Unit FPU-1 and charge the accumulator according to the instructions (see section 6.2) with the required pre-charge pressure.
- On piston accumulators with the gas valve version 1, the internal. hex. screw must be tightened with a torque rating of 20 Nm and with version 4, the valve seal cap must be tightened with a torque rating of 30 Nm.
- · Screw on valve protection cap.

#### c) Fitting the accumulator into the system

Re–connect the piston accumulator to the system and check for leaks according to section 6 - Inspection and Maintenance.



#### 9. Seal Kits & Replacement Pistons

For seal kits other than Buna N, and for sizes not listed please consult factory.

**Example:** SK 350 - 20 / <u>2</u>112 S - 210 FCF - VE - <u>18</u> E - 1 (see page 15 for details)

Piston Type Diameter

#### Piston Seal Kits

| Diameter   | Type 2 (NBR) | Type 3 (PUR) |
|------------|--------------|--------------|
| 06 (60mm)  | _            | 03016210     |
| 08 (80mm)  | 02123890     | 03013230     |
| 10 (100mm) | 00363268     | 02123414     |
| 12 (125mm) | _            | 02128104     |
| 15 (150mm) | 03016235     | 03145418     |
| 18 (180mm) | 00363270     | 02123415     |
| 25 (250mm) | 00363266     | 03016213     |
| 31 (310mm) | 03016195     | _            |
| 35 (355mm) | 00363272     | _            |

#### Replacement Pistons - w/ Seals

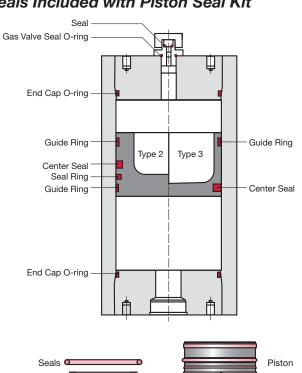
| Diameter   | Type 2 (NBR) | Type 3 (PUR) |  |
|------------|--------------|--------------|--|
| 06 (60mm)  | _            | 03009372     |  |
| 08 (80mm)  | 00352225     | 02119931     |  |
| 10 (100mm) | 00356847     | 02115547     |  |
| 12 (125mm) | 03016232     | 03016150     |  |
| 15 (150mm) | 03016228     | 03016231     |  |
| 18 (180mm) | 02118451     | 02121568     |  |
| 25 (250mm) | 00353980     | 03016171     |  |
| 31 (310mm) | 00356382     | _            |  |
| 35 (355mm) | 00356382     | _            |  |

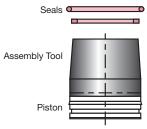
#### Piston Accumulators: Tools

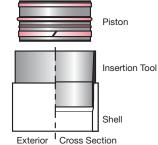
When repairing a piston accumulator, it is critical to use the appropriate tools to avoid seal damage. There are two tools required:

#### Seal Assembly Tool:

allows for gradual and even stretching of the seals when installing them onto the piston


#### **Piston Insertion Tool:**


a tapered shroud that protects the seals from the threaded portion of the shell, and provides even seal compression and piston alignment when inserting the piston into the shell.


#### **Tools**

| Diameter   | Seal Assembly | Piston Insertion |
|------------|---------------|------------------|
| 08 (80 mm) | 00359537      | 00359614         |
| 10 (100mm) | 00352198      | 00290056         |
| 12 (125mm) | 03016278      | 02128223         |
| 15 (150mm) | 02124157      | 02124161         |
| 18 (180mm) | 00350148      | 00290049         |
| 25 (250mm) | 00290035      | 00290046         |
| 31 (310mm) | 02127304      | 02127305         |
| 35 (355mm) | 00354147      | 00290985         |

#### Seals Included with Piston Seal Kit







For items not listed please consult factory.

WARNING: Only qualified persons should perform maintenance on any type of accumulator. Complete maintenance instructions are available - Contact HYDAC.

© Copyright 2000, 2007 HYDAC TECHNOLOGY CORPORATION Accumulator Division • Brochure - Service Piston Accumulators / 7.08







# HYDAC INTERNATIONAL Innovative Solutions

**Accumulators** 

**Filters** 

Fluid Service Products

Valves

**Clamps** 

Accessories

**Electronics** 

Cooling Systems

**Compact Power Units** 

Cartridge Valves

**Mobile Systems** 

(HYDAC) USA

**HYDAC TECHNOLOGY CORPORATION HYCON Division** 

2260 City Line Road Bethlehem, PA 18017

1-877 GO HYDAC

www.hydacusa.com

**HYDAC TECHNOLOGY CORPORATION Hydraulic Division** 

445 Windy Point Drive Glendale Heights, IL 60139

(630) 545-0800

www.hydacusa.com

HYDAC CORPORATION **HYDAC TECHNOLOGY CORPORATION** 

1718 Fry Road • Suite 100 Houston, TX 77084

(281) 579-8100

www.hydacusa.com

**HYDAC TECHNOLOGY CORPORATION** 

12606 NE 95th Street Building VC, Suite 100 Vancouver WA 98682

www.hydacusa.com

HYDAC Canada

HYDAC CORPORATION

14 Federal Road Welland Ontario, Canada L3B 3P2

905.714.9322

www.hydac.ca

HYDAC Mexico

**HYDAC INTERNATIONAL SA DE CV** 

AV. Pirul No. 212

54090 los Reyes Iztacala,

Tianepantla EDO. DE Mexico

01152-5-55565-8511

www.hydacusa.com

**HYDAC CORPORATION Accumulator Division** 

2280 City Line Road Bethlehem, PA 18017

**1-877 GO HYDAC** 

www.hydacusa.com

**HYDAC TECHNOLOGY CORPORATION** 

**Electronic Division** 

2260 City Line Road Bethlehem, PA 18017

1-877 GO HYDAC

www.hydacusa.com

**HYDAC CORPORATION** HYDAC TECHNOLOGY CORPORATION

11650 Mission Park Drive • Suite 108 Rancho Cucamonga, CA 91730

(909) 476-6777

www.hydacusa.com

HYDAC TECHNOLOGY CORPORATION

9836-B Northcross Center Court Huntersville, NC 28078

www.hydacusa.com

**HYDAC CORPORATION** 

101 - 18207 114 AVE W EDMONTON AB, Canada T5S 2P6

1.877.484.4228

www.hydac.ca

